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Milioika pertsonek bizi kalitatea nabarmen kaltetzen dieten nerbio sistema 

zentraleko gaixotasunak pairatzen dituzte. Horien artean, garunean eragina duten 

gaixotasun neurodegeneratiboak daude, hala nola, Alzheimerra, esklerosi anizkoitza 

edo Parkinsona, zeintzuetan neurona galera jasaten den eta ondorioz, gaitasun 

kognitiboa murriztu eta autonomia galtzen den eguneroko bizitzan. Nerbio sistema 

zentralean, neuronekin batera, astrozitoak, mikrogliak eta oligodendrozitoak daude. 

Hauek ere funtsezko eginkizunak betetzen dituzte, hala nola neuronen beharrak 

asetu, immunitate sistemarekin bitartekaritza lanak egin eta neuronen axoiak 

mielinizatu. Hain zuzen, mielina da lan honen ardatz nagusia.  

Neuronak, dendritez, axoiaz eta somaz osatuta daude. Pultsu elektrikoek neuronak 

zeharkatzen dituzte axoiatan zehar, axoiaren bi aldeetan ioien kontzentrazio 

aldaketa bortitzak eragindez. Pultsu elektrikoaren transmisio aproposa eman dadin, 

mielinak funtsezko zeregina du axoiak estaltzen, izan ere, geruza lipidiko honek 

bultzada elektrikoaren transmisio azkarra eta eraginkorra ahalbidetzen du. 

Oligodendrozitoak dira  nerbio sistema zentralean mielina sintetizatu eta 

mantentzeaz arduratzen diren zelulak,  baita neuronen behar energetikoa 

metabolitoen bidez (laktatoa eta pirubatoa esaterako) asetzen dutenak ere. 

Mielina galtzeak edo desmielinizazioa delakoak axoien atrofia eta neuronen heriotza 

eragin dezake. Egoera hau bermielinizazioaren bidez ekidin daiteke, 

desmielinizazioaren ondoren oligodendrozitoek mielina geruza berri bat sortzen 

badute.  Horretarako funtsezkoa da oligodendrozitoen zelula aitzindariek 

proliferatzea, lesio gunera migratzea eta oligodendrozito helduetan diferentziatzea, 

azken hauek mielina geruza berria eraiki dezaten. Hala ere, nahiz eta prozesu hau 

modu eraginkorrean eman, bermielinizazioan eraikitzen den mielina geruza berria 

aurrekoa baino meheagoa izaten da.  
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Jakina da desmielinizazio prozesuak hainbat patologiatan ematen direla, hala nola, 

iskemian, Alzheimerrean, garuneko lesio traumatikoetan edo esklerosi anizkoitzean, 

zeinetan desmielinizazioa patologia konplexu baten eragile nagusia den. Esklerosi 

anizkoitza gaixotasun autoimmune neurodegeneratiboa da, izan ere, immunitate 

sistemaren mielinari zuzendutako eraso latzek desmielinizazio plakak eragiten 

dituzte. Gaixotasun hau pairatzen duten pazienteek, bermielinizazio gaitasuna 

galtzen dute zahartzearen ondorioz eta immunitate sistemaren eraso ugariek 

eragiten duten mekanismoen higadurarengatik. Hori dela eta, ohikoa da gaixoak fase 

progresibo batetan sartzea, kalte neuronal eta funtzionala nabarmena eta 

atzeraezina jasanez. 

Gaur egun arte, esklerosi anizkoitzera bideratu diren tratamenduak nerbio-sistema 

zentrala kaltetzen dituzten erasoak geldiaraztera bideratu dira, terapia 

immunosupresibo edo immunregulatzaileen bidez. Zalantza izpirik gabe tratamendu 

horien eraginkortasunak gaixoen bizi-kalitate hobea ahalbidetu du. Hala ere, jakina 

da immunitate sistemaren erasoen ondoren berreskuratzea ez dela erabatekoa eta 

denboran zehar izandako eraso errepikatuek gaitasun funtzionalen galtzea 

dakartela neurona heriotza dela eta.  Egoera honek beste estrategia terapeutiko 

osagarriren garapena eskatzen du. 

Azken urteetan, bermielinizazioa edo mielina konponketa indartzeko estrategiak 

garatzeko ikerketak burutu dira. Batik bat, oligodedrozitoen zelula aitzindarien 

diferentziazioa sustatzea ezarri da helburutzat, horrela mielina berria sintetizatzeko 

gai diren oligodendrozito helduak sortuz. Izan ere, esklerosi anizkoitzean eta 

desmielinizazioa ematen den beste gaixotasunetan egindako post-mortem 

ikerketetek adierazi dute oligodendrozitoek diferentziatzeko gaitasuna galtzen 

dutela. Baina bermielinizaziora bideratutako tratamenduen garapenak, lehenengo, 

desmielinizazio eta bermielinizazio prozesuen ezagutza sakona behar du. Aldi 
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berean, prozesu hauen azterketarako egokiak diren eredu esperimentalak definitzea 

eta tratamendu jakin baten eragina modu ez-inbasibo batean ebaluatzea 

ahalbidetzen duten teknikak garatzea ezinbestekoa da. 

Desmielinizazioaren eta bermielinizazioaren azterketa in vitro ereduetan 

(oligodendrozito zelula aitzindarien kultiboetan), ex vivo ereduetan (kultibo 

organotipiko deritzen zerebelo xerra finetan), eta in vivo animali ereduetan egiten 

da, batez ere EAE eta kuprizona animali ereduetan. Horregatik, eredu hauetan 

desmielinizazioa eta bermielinizazioa, hau da, mielinaren kuantifikazioa, denboran 

zehar aztertzea ahalbidetzen duten teknika ez-inbasiboen garapena garrantzi 

handikoa da. 

Zentzu horretan erresonantzia magnetikoaren bidezko irudigintzak (MRI, ingelesez) 

funtsezko eginkizuna izan dezake. Esklerosi anizkoitzean teknika honek plaka 

desmielinizanteak diagnostikatzeko duen sentikortasun aparta da. Testuinguru 

honetan, MRI teknikak aukera ugari eskaintzen ditu, kontraste anitzak dituzten 

kalitate handiko irudi anatomikoak lortzen baititu. Besteak beste, burmuineko 

eskualde desberdinen aktibazioa, garunean zehar urak duen difusioa (garunaren 

antolaketa eta egitura mailarekin erlazionatutakoak), edota garunaren ehunen 

arteko kontraste handia erakusten duten irudiak eraiki daitezke parametro 

desberdinak moldatuz. Hala ere, komunitate zientifikoak ez du oraindik adostu 

mielina kantitatea definitzeko MRI bidezko protokolo edota teknikarik, zenbait 

proposamen egin badira ere. 

Lan honetan mielinaren edukia kuantifikatzeko eremu handiko erresonantzia 

magnetikoaren (11,7 Tesla) irudiak erabiltzeko eredu esperimentalak eta 

protokoloak garatu ditugu, lana 5 atal desberdinetan banatuta: 1) Kultibo 

organotipikoetan mielina kantitatea kuantifikatzeko protokoloen garapena.; 2) 
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Denbora luzean egindako erresonantzia magnetiko bidezko irudigintza 

multiparametriko ikerketa, mielinaren edukia kuantifikatzeko eta desmielinizazio 

eta bermielinizazio prozesuen jarraipena egiteko kuprizona sagu ereduan; 3) 

Erresonantzia magnetiko bidezko irudigintza multiparametrikoa Alzheimerreko bi 

animalia ereduetan, materia zuri eta grisaren aldaketak ikertzeko eta mielina 

kantitatearen neurketa burutzeko; 4) Atsedenean egindako erresonantzia 

magnetiko bidezko irudigintza funtzionalaren (rs-fMRI, ingelesez) ikerketa,  

garunaren funtzioan desmielinizazio eta bermielinizazio prozesuen eragina 

ebaluatzeko eta clemastina bermielinizazio terapia potentzialaren efektua 

aztertzeko anatomikoki eta garun-konektibitatean; 5) Zahartzeak garuneko 

konektibitatean duen eragina aztertu atsedenean egindako erresonantzia magnetiko 

bidezko irudigintza funtzionalaren bidez. 

Aipatzekoa da Alzheimer eta zahartze ereduak lan honen helburu nagusien artean 

ez dauden arren, nolabaiteko mielina galera pairatu dezaketela, eta lan honetan 

ikertu izanak aukera eman digula esklerosi anizkoitzarekin lotutako 

desmielinizazioa aztertzeko garatutako metodologia esperimentalki balioztatzeko. 

Horrela, sendotasuna eta unibertsaltasuna eskainiz, nerbio sistema zentrala 

aztertzeko. 

Lehenengo atala, hau da,  kultibo organotipikoaren irudigintzarekin lotutakoa, 

erronka handia izan da eta horrek MRI teknika gaitasunak mugara eramatera 

behartu gaitu. Jaio ondoren 7-12 eguneko saguen zerebelo xerra kultiboak mielina 

ikertzeko egokitzat hartzen dira, lisolezitina detergentearen aplikazioak 

desmielinizazioa eragiten baitu kultiboetan, ondoren berehalako bermielinizazioa 

gertatuz. Testuinguru sinple batetik hasi nahian, kultibatu gabeko garun xerrak 

irudikatzen hasi gara (0,3-1 mm-ko lodiera), gero kultibo organotipiko lodietara 

(aurrekoak baino meheagoak eta egitura ahulagoarekin) jo dugu, azkenik, ohiko 
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kultibo organotipikoekin amaitzeko, askoz ere meheagoak direnak (<0,1 mm). 

Garun xerren eta kultibo  organotipiko lodien irudigintza arrakastatsua izan da, 

seinale/zarata erlazio handiko irudiak eta materia zuria eta grisaren arteko 

kontraste ona lortuz. Hala ere, kultibo organotipiko finek (300-350 µm-koak 

jatorrian), 7 egunez kultibatu ondoren 100 µm baino gutxiagoko lodiera izaten dute, 

mehetuz baitoaz pixkanaka-pixkanaka, eta horrek asko zailtzen du kalitate oneko 

irudiak eskuratzea. Soinu/zarata erlazio ona duten irudiak lortu arren kultibo 

organotipiko finetan, ehunak ez du kontrasterik eskaini garunaren materia zuri eta 

grisaren artean. Honen ondorioz, nanoteknologia erabiltzen saiatu gara 

mielinarekiko espezifikoak diren partikulak sintetizatuz. Teknika honen potentziala 

erakusten duten kontzeptu frogak egin ditugu gure ikerketetan. Hala ere, mielinara 

zuzendutako liposoma funtzionalizatuek (gadolinio, fluoroforo eta mielinaren 

aurkako antigorputzarekin) ez dute esperotako espezifikotasuna erakutsi. Teknika 

molekularren garapena eta azterketak ikerketa sakona eskatzen duenez, eta tesi 

honen lehentasunen artean ez dagoenez, ez dugu ildo horretatik jarraitu.  

Ex vivo ereduetatik in vivo ereduetara jotzeko, kuprizona eredu toxikoarekin lan egin 

dugu. Eredu honetan, kuprizona izeneko toxikoaren bidez garunaren materia txuri 

gune nagusiak kaltetu eta desmielinizatu egiten dira. Eredu honen ezaugarri eta 

abantaila nagusiak  desmielinizazioa pixkanaka-pixkanaka gertatzen dela,  eta 

ondoren, behin toxikoa  dietatik kenduta, bermielinizazio espontaneoa ematen dela 

dira. Azterketa honetan, mielinaren edukia aurrekaririk gabeko bereizmen espazial 

eta tenporalarekin neurtu zen, esperimentuko 10 asteetan mielinaren berariazko 

irudi bateria eskuratuz. Osagarri gisa, post-mortem, mielinaren tindaketa espezifikoa 

egin da Luxol fast blue konposatuarekin. Honen bidez, desmielinizazio eta 

bermielinizazio prozesuak garbi identifikatu dira eta emaitza histopatologikoen eta 

erresonantzia magnetikoaren bidez lortutako seinaleareen arteko korrelazio zuzena 



 
 
 
 
 
 
 
 

xxxii | Laburpena 

ahalbidetu du. Honela, ondorioztatu dugu T2 pisuez haztatutako irudi sekuentziak 

kontraste handiena eskaintzen duena dela, desmielinizazio, bermielinizazio eta 

egoera bereko subjektu osasuntsuekin alderatzeko sentsibilitate eta gaitasun handia 

izateaz gain. Aipatu beharra dago T2 pisuez haztatutako irudi sekuentzia mundu 

osoko laborategietan eta ospitaleetan erabiltzen dela egunerokoan, beste modalitate 

batzuk logistikoki konplexuagoak diren bitartean. 

Lan honetan, toxikoaren esposizioaren ondorengo 2 asteetan hasi da patologia 

saguetan baina desmielinizazio eta bermielinizazio denbora patroi desberdinak 

identifikatu dira garuneko eskualde desberdinetan. Gainera, desmielinizazio 

kronikoaren ondorioak aztertu dira protokolo bera erabiliz toxikoarekiko 

esposizioaren ondorengo 6 hilabeteetan,  eta oraindik ere sagu osasuntsuekin alde 

nabarmenak ikusi dira, erabateko bermielinizazioa eta sendatzea ematen ez direla 

adieraziz. 

Lan honen hirugarren atalean, Alzheimer gaixotasunaren bi sagu ereduetan probatu 

da (amiloide plakak garatzen dituena alde batetik, eta tauopatia garatzen duena 

bestetik) kuprizona ereduan garatutako protokoloa. Honen interesa, sagu eredu 

desberdinek jasaten duten patologia desberdinean datza. Kuprizona ereduan aipatu 

da desmielinizazioa dela kaltearen eragile nagusia. Alzheimer ereduetan aldiz, 

patologiak garunaren materia txuri eta grisean kalte sakonak eragin ditzake modu 

konplexuan, axoien eta neuronen galtzea eraginez. Aipatzekoa da ikerketa honetan 

ez dugula aldaketa nabarmenik ikusi mielinari dagokionez bi Alzheimer ereduetan. 

Hala ere, amiloide plakak garatzen dituen ereduan, erresonantzia magnetikoaren 

bidezko irudigintzak garuneko materia zurian (ustez axoien kaltea dela eta) eta 

garuneko eskualde desberdinetan atrofia alterazioak agerian utzi ditu, tautopatia 

garatzen duen ereduan horrelakoak ikusi ez diren bitartean. Bi ereduetan 

alterazioak ikusi dira materia grisean, seguru asko, amiloide plakek edo tau 
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proteinek seinalean duten eragin zuzenaren edo sortzen duten kaltearen ondorioz. 

Ikerketa honen bidez, MRI multiparametrikoaren erabilgarritasuna frogatu, eta 

aztertutako parametro ugariek prozesu patologiko desberdinenganako 

sentikortasuna (eta mielinarekiko espezifikotasun eza zenbaitetan) dutela ikusi ahal 

izan dugu testuinguru desberdin batetan. Gainera, amiloide proteinek alde batetik 

eta tau proteinek bestetik, garunean eragiten duten kaltea deskribatu ahal izan 

dugu. 

Orain arte ikusi dugun moduan, lan hau hein handi batetan irudi anatomikorako 

protokolo esperimentalak garatzera bideratu da, eta horrek patologia desberdinen 

garapenarekin erlazionatutako aldaketa aztertzea ahalbidetu du. Bestalde, lan 

honen beste atal garrantzitsu bat irudi funtzionalerako protokoloak garatzea izan 

da.  Bermielinizazio eta desmielinizazio prozesuek garunean duten eragina aztertu 

da. Horrela, atseden egoeran  egindako erresonantzia magnetiko irudigintza 

funtzionala (rs-fMRI) burutu da kuprizona ereduan modu longitunalean, 

patologiaren hasieran garuneko hiper-aktibitatearen fase bat dagoela antzemanez 

(Alzheimerra edo esklerosi anizkoitza bezalako patologietan ere gertatzen den 

bezala), eta ondoren, hipo-aktibitate edo konektibitate murriztuko fase bat ikusiz. 

Aldi berean, bermielinizazio prozesuan zehar, garunaren funtzioen berreskurapen 

progresiboa ikusi genuen. Prozesu horretan, beste sagu talde batetan, clemastina 

terapia bermielinizatzailea probatu zen eta konposatu honen izaera birsortzailea 

frogatu genuen, bai anatomikoki zein funtzionalki.  

Irudi funtzionalen protokoloak oso eraginkorrak izan dira bermielinizazio eta 

desmielinizazio prozesuak deskribatzeko, neurona sare ezberdinek kaltetze eta 

berreskurapen patroi tenporalak erakusten dituztelarik. Emaitza honek terapia 

berrien garapenean lagundu dezake, ikuspuntu funtzionalaren arabera, 

tratamenduen administraziorako jarraibideak garatzea ahalbidetuz. 
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Nerbio sistema zentraleko gaixotasun asko kronikoki jasaten dira bizitzan zehar, 

garapen isilean hasiz, heldutasunean klinikoki agertuz eta zahartzaroan bere 

alderdirik erasokorrena erakutsiz. Garunaren bereizgarritasunetako bat bere 

plastikotasuna da, bere antolamenduak eta funtzionamenduak etengabe 

eboluzionatzen baitute bizitzan zehar.  Hori dela eta uste dugu garrantzitsua dela 

indibiduo osasuntsuetan heltze eta zahartze prozesuak aztertzea, modu naturalean 

indibiduo osasuntsuetan ematen diren aldaketak eta gaixotasun desberdinei 

dagozkien alterazioak desberdintzeko. Hori ikertzeko, 2 hilabetetan hasi eta 13 

hilabetera arte sagu osasuntsuetan konektibitate funtzionalaren bilakaera 

aztertzeko garatutako MRI protokolo funtzionalak erabili ditugu. Saguen 

biziraupenaren ikuspuntutik hau denbora luzea da, beraien batez besteko bizi 

itxaropena 25-27 hilabete ingurukoa da eta. Modu honetan, garun konektibitatea 2 

eta 8-9 hilabetera arte progresiboki nola handitzen den ikusi ahal izan dugu, hortik 

aurrera progresiboki jaitsiz 13 hilabetera arte, sagu gazteetan ikusitakoaren antzeko 

balioak ikusiz azken puntu honetan. Emaitza hauek kontuan hartzekoak dira 

saguekin ikerketak egiterako orduan, bai esperimentu diseinu aldetik, baita 

emaitzen interpretazio aldera ere.  

Laburbilduz, desmielinizazio eta bermielinizazioa, hots mielina, ikertzeko oinarrizko 

zutabe gisa balio izan duten neurodegenerazio eredu ugari erabili dira tesi honetan, 

mielinaren irudi sentikor eta espezifikoak egiteko oinarriak ezarri dira eta 

mielinaren kalte edo birsorkuntza maila anatomiko eta funtzionalean aztertu da. 

Hori dela eta, uste dugu lan honek eragin handia izango duela etorkizunean 

bermielinizazio terapia eraginkorrak garatzeko. 
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 Las enfermedades del sistema nervioso central afectan a millones de personas en el 

mundo, deteriorando de forma significativa su nivel de vida. Entre ellas están las 

enfermedades neurodegenerativas que afectan principalmente al cerebro, como el 

Alzheimer, la esclerosis múltiple o el Parkinson, que se caracterizan por la muerte 

paulatina de las neuronas con su consiguiente deterioro cognitivo y pérdida de 

autonomía en la vida diaria. Sin embargo, no solo de neuronas está compuesto el 

cerebro, ya que astrocitos, microglía y oligodendrocitos ejercen una función 

fundamental abasteciendo las necesidades de las primeras, estableciendo una 

comunicación directa con el sistema inmunológico o mielinizando los axones de las 

neuronas. Concretamente, la mielina, es el objeto de estudio de este trabajo. 

Las neuronas, están formadas por dendritas, axones y el soma, donde encontramos 

el núcleo. El impulso eléctrico viaja a lo largo de las neuronas a través de los axones, 

permitido por la abrupta alteración en la concentración de iones a los dos lados del 

axón. En este contexto, la mielina juega un papel fundamental recubriendo los 

axones. Esta vaina lipídica posibilita una rápida y energéticamente eficiente 

transmisión del impulso eléctrico proporcionando aislamiento al axón neuronal. Los 

oligodendrocitos son los responsables de sintetizar y mantener la mielina en el 

sistema nervioso central, además de proveer de metabolitos (p.ej. lactato y piruvato) 

a las neuronas para poder hacer frente el elevado gasto energético de estas. 

La pérdida de la mielina o desmielinización puede dar lugar a la atrofia axonal y 

muerte neuronal. Esta pérdida puede revertirse por medio de la remielinización, 

llevada a cabo por los oligodendrocitos. En este proceso reparador, las células 

precursoras de oligodendrocitos proliferan, migran al lugar de la lesión y se 

diferencian en oligodendrocitos mielinizantes, los cuales regeneran la vaina de 

mielina produciendo un característico recubrimiento de mielina más fino que el 

original.  
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Los procesos desmielinizantes han sido descritos en varias patologías como la 

isquemia, el Alzheimer, la lesión cerebral traumática o la esclerosis múltiple, donde 

la pérdida de mielina es la protagonista principal en una patología de gran 

complejidad. La esclerosis múltiple es una enfermedad autoinmune 

neurodegenerativa que se caracteriza por el ataque del sistema inmunológico a la 

vaina de mielina, causando placas desmielinizantes. En los primeros estadios de la 

enfermedad, la remielinización puede ser extensa y evitar el deterioro cognitivo. Sin 

embargo, los repetidos brotes a lo largo del tiempo junto con la pérdida de eficiencia 

regenerativa causada por el envejecimiento, hacen que este proceso pierda 

eficiencia. Así, los pacientes de esclerosis múltiple suelen entrar en una fase 

progresiva en la que la pérdida neuronal y la pérdida de funciones son sustanciales e 

irreversibles.  

Hasta la fecha, los tratamientos en la esclerosis múltiple se han centrado en frenar 

los brotes que dañan el sistema nervioso central, mediante terapias 

inmunosupresoras o inmunoreguladoras. Puede afirmarse que la eficiencia de estos 

tratamientos ha posibilitado tener una mejor calidad de vida a los pacientes y ha 

reducido de forma abrumadora la frecuencia de estos brotes. A pesar de ello, la 

incompleta recuperación después de un brote y la acumulación del daño a lo largo 

del tiempo hacen que el paciente sufra un deterioro cognitivo por pérdida neuronal. 

Por este motivo, la remielinización ha sido objeto de estudio en los últimos años e 

impulsar este proceso mediante a tratamientos está en el foco de la investigación. 

Estos tratamientos se centran principalmente en promover la diferenciación de 

células precursoras de oligodendrocitos en oligodendrocitos maduros, proceso que 

se ha visto afectado en esta y otras patologías en estudios post-mortem realizados en 

humanos. El desarrollo de terapias remielinizantes exige un profundo 

entendimiento de los procesos de desmielinización y remielinización, la definición 
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de modelos experimentales adecuados para su estudio, y el desarrollo de técnicas 

que permitan evaluar de forman no invasiva el efecto de un determinado 

tratamiento.   

El estudio de estos procesos se realiza principalmente en modelos  in vitro con 

cultivos de células precursoras de oligodendrocitos, en modelos ex vivo con cultivos 

organotípicos (finos cortes de cerebelo cultivados) y en modelos in vivo con 

animales, principalmente en los modelos murinos EAE y cuprizona. Para el 

desarrollo de estudios longitudinales que permitan monitorizar los procesos de 

desmielinización y remielinización a lo largo del tiempo es imprescindible el 

desarrollo de técnicas no-invasivas, reproducibles, robustas y que permitan 

cuantificar de forma precisa la cantidad de mielina con la progresión de la 

enfermedad o en respuesta a un tratamiento. 

En este sentido la imagen por resonancia magnética debe jugar un papel 

fundamental. Esta técnica se caracteriza por su carácter no invasivo, su alta 

resolución y su versatilidad, además de su magnífica sensibilidad para el diagnóstico 

de placas desmielinizantes en la esclerosis múltiple. La resonancia magnética ofrece 

un amplio abanico de posibilidades, ya que permite obtener imágenes anatómicas de 

alta calidad con múltiples contrastes, determinar la función y activación de 

diferentes regiones del cerebro u obtener imágenes de difusión del agua, las cuales 

ofrecen un gran contraste entre tejidos estructurados como la materia blanca (rica 

en mielina) y tejidos menos estructurados como la materia gris.  A pesar de ello, hoy 

en día no existe ningún protocolo o técnica universalmente aceptada de imagen por 

resonancia magnética que ofrezca una medida (un parámetro medible) precisa del 

contenido de mielina en un tejido, a pesar de que varias técnicas hayan sido 

postuladas en la literatura como potenciales indicadoras del contenido de mielina.   
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En este trabajo hemos desarrollado modelos y protocolos experimentales para el 

uso de la resonancia magnética de alto campo (11.7 Teslas) para la cuantificación 

del contenido de mielina, y procesos asociados a ellos, dividiendo el trabajo en 5 

apartados diferentes: 1) Desarrollo de protocolos de imagen por resonancia 

magnética para la cuantificación de mielina en cultivos organotípicos; 2) Estudio 

multiparamétrico longitudinal de imagen por resonancia magnética para la 

cuantificación del contenido de melina y monitorización de los procesos de 

desmielinización y remielinización en el modelo murino cuprizona; 3) Estudio 

multiparamétrico de imagen por resonancia magnética para la evaluación de 

alteraciones en la materia gris, y  del contenido de mielina en dos modelos animales 

de Alzheimer; 4) Estudio de imagen por resonancia magnética funcional en estado 

de reposo para la evaluación del impacto de los procesos de desmielinización y 

remielinización, y de la aplicación de la potencial terapia remielinizante clemastina 

en la conectividad cerebral: 5) Estudio de imagen por resonancia magnética 

funcional en estado de reposo para estudiar el efecto del envejecimiento en la 

conectividad cerebral. Hay que mencionar que si bien los modelos de Alzheimer y de 

envejecimiento no son el objeto principal de este trabajo, pueden transcurrir con 

cierto grado de desmielinización. Su inclusión en el estudio nos ha permitido validar 

experimentalmente las metodología desarrolladas para estudiar la desmielinización 

asociada a la esclerosis múltiple, dotándolos así de robustez y universalidad para el 

estudio del sistema nervioso central.  

El primer apartado, el relativo a la imagen de cultivos organotípicos, ha supuesto un 

reto mayúsculo que nos ha hecho llevar al límite las capacidades de la técnica 

experimental de imagen por RM. El cultivo de rodajas de cerebelo de ratones de 7-

12 días es considerado un modelo ex vivo adecuado para el estudio de la mielina, ya 

que la aplicación del detergente lisolecitina provoca la desmielinización en el cultivo, 
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seguida de una remielinización espontanea. En una estrategia reduccionista, se ha 

comenzado por hacer imagen de rodajas de cerebro (0.3-1 mm de grosor), pasando 

después a cultivos organotípicos gruesos (más delgados que los anteriores y con una 

estructura más endeble), para finalizar con cultivos organotípicos convencionales, 

mucho más finos (<0.1 mm). La imagen de rodajas de cerebro y de cultivos 

organotípicos gruesos ha resultado exitosa, obteniendo imágenes de alta relación 

señal-ruido y un buen contraste entre materia blanca y gris. Sin embargo, los 

cultivos organotípicos finos (en origen de 300-350 µm), tras 7 días en cultivo pasan 

a tener un grosor de menos de 100 µm, que complica sobremanera la obtención de 

imágenes por resonancia magnética. A pesar de haber obtenido imágenes con buena 

relación señal-ruido, el tejido no ha mostrado contraste entre las zonas de materia 

blanca y gris. En una aproximación experimental avanzada hemos intentado hacer 

uso de la nanotecnología para desarrollar sondas de imagen molecular específicas 

de mielina, que permitirían paliar el inherente bajo contraste de la materia blanca en 

estos cultivos aumentando la sensibilidad de detección de la mielina mediante 

reconocimiento molecular. En nuestros estudios hemos hecho pruebas de concepto 

que demuestran el potencial de esta técnica. Sin embargo, nos hemos encontrado 

con que a pesar de haber intentado aumentar el contraste mediante liposomas 

funcionalizados específicos a la mielina, marcados con gadolinio y sondas 

fluorescentes, las uniones no-específicas de estas sondas con el tejido nos ha hecho 

ver que aún queda mucho trabajo que desarrollar en esta línea. Su desarrollo 

temporal va a traspasar el límite de este trabajo de tesis doctoral.  

Para pasar de modelos ex vivo a in vivo se ha trabajado con el modelo murino 

cuprizona, en el que la intoxicación del ratón por dieta oral a través de este agente 

quelante de cobre produce una extensa desmielinización en los tractos de materia 

blanca cerebrales. La principal característica y ventaja de este modelo es que la 
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desmielinización se produce de forma progresiva alcanzando su máximo a las 5 

semanas, seguida por una remielinización espontanea al cesar la administración del 

tóxico. En este estudio se ha realizado una monitorización del contenido de mielina 

con una resolución espacio-temporal sin precedentes, adquiriendo una batería de 9 

imágenes potencialmente específicas a la mielina durante las 10 semanas del 

experimento. Como complemento, se han llevado a cabo estudios post mortem 

mediante la tinción específica de mielina Luxol fast blue, identificando claramente 

los procesos de desmielinización y remielinización y permitiendo establecer 

correlaciones directas entre los resultados histopatológicos  con la señal obtenida 

por imagen por resonancia magnética. Así, hemos podido concluir que la imagen 

ponderada en T2 es la que mayor especificidad ofrece, además de una alta 

sensibilidad y capacidad de diferenciar los estados de desmielinización, 

remielinización y tejido sano. Cabe mencionar que la imagen ponderada en T2 se 

adquiere de forma rutinaria en laboratorios y hospitales de todo el mundo, al 

contrario de otras modalidades. 

En este trabajo se han identificado también patrones temporales diferentes de 

desmielinización-remielinización en diferentes regiones del cerebro, comenzando a 

las 2 semanas tras la exposición al tóxico. Finalmente, se han estudiado las 

consecuencias de la desmielinización a nivel crónico, realizando el mismo 

procedimiento 6 meses después de la exposición al tóxico y pudiendo mostrar 

todavía diferencias notables entre ratones sanos e intoxicados. 

A continuación, en un intento de validar la capacidad del protocolo experimental 

desarrollado para caracterizar los cambios en la mielina, hemos repetido nuestros 

estudios en dos modelos de ratón de Alzheimer, uno de ellos con sobreexpresión de 

la proteína precursora de amiloide (APP) y otro con sobreexpresión de la proteína 

tau. La gran ventaja de los modelos in vivo es que nos permiten segregar estos dos 
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procesos patológicos que tienen lugar en el Alzheimer, para estudiarlos por 

separado. Haciendo uso de técnicas histológicas, se ha medido el contenido de 

mielina en ambos modelos, no observando alteraciones sustanciales en este aspecto. 

Sin embargo, la imagen por resonancia magnética ha revelado alteraciones en la 

sustancia blanca (presumiblemente daño axonal) del cerebro y atrofia cerebral en 

diferentes regiones en el modelo de ratón que sobreexpresa proteína precursora de 

amiloide, mientras que estas anomalías no han sido detectadas en el modelo que 

sobreexpresa proteína tau. Es decir, en estas patologías puede haber daño axonal, 

pero no debido a una pérdida significativa de mielina, como ocurre en la esclerosis 

múltiple. Adicionalmente, hemos podido observar alteraciones en zonas de materia 

gris, probablemente debidas a la presencia de placas de β-amiloide u ovillos 

neurofibrilares (compuestos de proteína tau), o debidos a los procesos patológicos 

desencadenados por estos. Así pues hemos podido demostrar la utilidad de la 

realización de estudios de imagen por MRI multiparamétricos, que permiten 

distinguir los procesos de desmielinización de otros procesos patológicos en el 

cerebro. 

Si bien gran parte de este trabajo se centra en el estudio de parámetros de imagen 

que nos permitan estudiar alteraciones patológicas asociadas a la mielina, otra gran 

parte se ha centrado en el desarrollo de protocolos experimentales de imagen 

funcional que nos permitiesen estudiar el impacto de los procesos de 

remielinización y desmielinización en la función cerebral. Así, se ha realizado un 

estudio longitudinal de imagen por resonancia magnética funcional en estado de 

reposo (rs-fMRI) durante los procesos de desmielinización y remielinización en el 

modelo de cuprizona, detectando que existe una fase de hiperactividad cerebral al 

inicio de la patología (como es conocido que ocurre también en patologías como el 



 
 
 
 
 
 
 
 

xliv | Resumen 

Alzheimer o la esclerosis múltiple), para más adelante continuar con un estado de 

hipoactividad y disminución de la conectividad en las redes neuronales del cerebro.  

En paralelo, durante los procesos de remielinización o regeneración, hemos sido 

capaces de detectar  una recuperación paulatina de la función cerebral, proceso en el 

que el uso de un agente remielinizante como terapia, la clemastina, ha demostrado 

su carácter beneficioso, tanto a nivel anatómico como funcional. Los protocolos 

experimentales de imagen funcional se han mostrado muy eficaces a la hora de 

describir estos cambios, mostrando que diferentes redes neuronales muestran 

patrones temporales de deterioro y recuperación diferentes. Este resultado podría 

dar lugar a terapias más efectivas desde el punto de vista funcional, al permitir el 

desarrollo de pautas de administración de tratamientos con varios puntos 

temporales diferentes. 

Muchas de las enfermedades del sistema nervioso central transcurren de forma 

crónica a lo largo de toda la vida del sujeto que las padece, comenzando de forma 

silente durante el desarrollo, mostrándose de forma clínica en la edad adulta, y 

mostrando su lado más agresivo durante el envejecimiento. Pero el cerebro es un 

sistema plástico, cuya organización y funcionamiento evoluciona constantemente a 

lo largo de la vida. Por ello creemos que es importante estudiar los procesos de 

maduración y envejecimiento en sujetos sanos, para poder distinguir cambios 

naturales de la función cerebral de aquellos cambios que son consecuencia de 

procesos patológicos o de terapias aplicadas frente a los mismos. Por ello, hemos 

utilizado los protocolos de imagen funcional en ratones sanos desde los 2 meses de 

edad hasta los 13 (un largo periodo de tiempo, teniendo en cuenta que la esperanza 

de vida media de un ratón es de unos 750-800 días para ratones de la cepa C57BL). 

De este modo hemos podido observar como la conectividad cerebral aumenta 

progresivamente desde los 2 hasta los 8-9 meses de edad para, a partir de ahí, 
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descender progresivamente hasta los 13 meses de edad, llegando a valores similares 

a los observados en ratones jóvenes de 2 meses de edad. Por lo tanto, hemos podido 

describir como el cerebro del ratón madura hasta los 8-9 meses y comienza a 

mostrar alteraciones en la conectividad cerebral a partir de este punto. De este 

modo es de esperar un declive de actividad cerebral en sujetos sanos usados como 

control en estudios con animales envejecidos, que deberá tenerse en cuenta en la 

interpretación de resultados cuando se comparen con sujetos patológicos. 

En resumen, en esta tesis en la que se han utilizado varios modelos murinos de 

neurodegeneración como pilar fundamental para el estudio de la desmielinización y 

remielinización, se han sentado las bases para realizar una imagen sensible y 

específica de mielina y se ha estudiado el impacto a nivel anatómico y funcional  de 

los procesos patológicos asociados esta, revelando importantes alteraciones que 

transcurren con diferente perfil temporal en diferentes zonas y redes del cerebro. 

Por ello consideramos que este trabajo tendrá un impacto considerable para el 

desarrollo de terapias remielinizantes efectivas en el futuro. 
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Diseases of the Central Nervous System (CNS) include autoimmune diseases, 

cerebrovascular diseases, neurodegenerative and neurodevelopmental diseases, and 

traumatic injuries. Pathologies such as multiple sclerosis, Alzheimer’s disease, 

traumatic brain injury or stroke, for instance, erode the well-being of countless 

people in the world. Meanwhile, the application of neuroprotective and 

neuroregenerative strategies raises hope for overcoming CNS diseases. Along with 

the development of new therapies, it is imperative to generate novel technologies to 

evaluate the progression of disease and the effectiveness of such therapies, not only 

in order to achieve a deep understanding of the mechanisms behind damage but also 

to reach a profound comprehension of the brain. Certainly, in a great extent due to 

implications of population aging, CNS diseases and understanding the complex 

function of the brain are among the major challenges for the XXI century for all 

humankind. 

1. The central nervous system 

The CNS is made of more than 100 billion cells composing the brain, spinal cord and 

retina. It is responsible for cognition, actions, senses and emotion and its energy 

consumption corresponds to the 20% of the total required energy in humans [1]. 

This system is protected by bones (skull and vertebrae) and by the blood-brain 

barrier (BBB) that confers a separation from the systemic blood circulation. Its 

isolation from the exterior makes the CNS less vulnerable to toxins or hazardous 

pathogens, but more difficult to reach by therapeutics when required, a situation 

aggravated by the limited self-repair capacity of the CNS. 

Cell populations in the brain can be subdivided into glial cells and neurons, each 

group composed of approximately 85 billion cells [2]. Glial cells are encompassing 

astrocytes, oligodendrocytes and microglia. They have multiple functions, such as 
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supporting the neurons [3], regulating synaptic transmission [4], [5], myelinating of 

axons [6],  maintaining and regulating the blood-brain barrier functionality [7] and 

being responsible for the cross-talk with the immune system [8]. It should not be 

surprising therefore that alterations in microglia could be underlying degenerative 

and inflammatory disorders in the CNS [9].  

Neurons are responsible for receiving, storing and processing the information and 

are vulnerable to external damage. Their loss results in cognitive decline and loss of 

function. This is aggravated by the fact that mature neurons are post mitotic cells, 

unable to conduct division, adding difficulty to the regeneration of lost connections. 

Additionally, the complex network consisting of interactions between and within 

microglia and neurons is hard to understand, and challenging to restore, with 

currently available techniques and therapies. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Glial cells and neurons in the CNS. Adapted from [10]. 
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Basic understanding of the mechanisms of neuronal function and impulse 

transmission is required to better understand the implication of such functions in 

CNS diseases. Neurons are composed by the soma, or cell body, axons and dendrites. 

The transmission of the electrical signal through the axon lies in the generation of an 

unequal charge across the membrane of the neuron, by altering the ion 

concentrations between the inner and outer space of the cell (i.e. by establishing 

transmembrane ion concentration gradients) [11].  

Briefly, at a resting state, and regulated by Na+/K+ pumps, high concentrations of 

sodium ions are kept at the outside of the neuron, with a lower concentration in the 

inside, establishing a potential of approximately -60 millivolts (lower in the inner 

space) between both sides of the membrane. Together with Na+/K+ pumps, the 

presence of gated channels sensitive to neurotransmitters enables an abrupt 

alteration of ion concentrations at both sides of the wall. With the advent of 

excitation produced by the neurotransmitters, in a phenomenon called 

depolarization, sodium channels located at the initial axonal segment of the neuron 

allow the massive entrance of sodium ions into the cell resulting in an inner positive 

charge, generating an action potential. This effect is propagated throughout the 

axon, soma and dendrites by voltage-gated sodium channels. Once the action 

potential reaches the dendrites, a release of neurotransmitters to the synaptic cleft 

of target neurons will be carried out depending on the strength and frequency of the 

action potentials. In this way, neurotransmitters release regulates the amplitude or 

strength of the next action potential [12].  

Once the impulse has been transmitted, the repolarization of the cell membrane 

takes place, when K+ channels compensate the charge by an accumulation of 

potassium ions into the extracellular space. Finally, the potential of the membrane 

goes back to normal [12]. 
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Figure 2. Neuronal synapse. Neurotransmitters are released into the synaptic cleft, which 
might trigger the generation of the action potential. 

 

Even though the propagation of action potentials takes place at high speed, the 

leaking of sodium ions towards the extracellular space makes the impulse 

progressively weak. In this context, myelin becomes a crucial player in the process 

of nerve impulse transmission. Myelin is a proteolipid membrane that wraps axons 

and provides insulation to them, preventing a high sodium ions leakage into the 

extracellular space and allowing a fast transmission of impulses. Hence, action 

potentials can travel at speeds up of 100 m/s, making possible a rapid response to a 

given stimulus [13].  
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2.  Myelin 

Myelin is a compact and highly organized multilamellar membrane that wraps axons 

of vertebrates, generated by oligodendrocytes in the CNS and by Schwann cells in 

the peripheral nervous system. Oligodendrocytes are metabolically very active and 

can generate around 5000-50000 mm2 of myelin per cell per day, when myelination 

takes place [14]. The generated membrane is composed of spirally enwrapped units 

of double bilayers separated by an aqueous solution with a thickness of 3-4 nm [15]. 

In axons, the large myelinated region through which the electric impulse is 

transmitted is known as internode and is only interrupted with 1μm gaps named 

nodes of Ranvier, where a high concentration of Na+ and K+ channels allow the 

amplification of the impulse until the next node (Fig. 3). 

 

 

 

 

 

 

 

 

 

 
 
Figure 3. Myelin sheath structure. The compact myelin membrane is extended all along the 
internode, closely interacting with oligodendrocytes [16]. 
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Myelin is approximately composed of 80% lipids and 20% proteins. The most 

abundant lipids are phospholipids and glycosphingolipids, which combine with 

cholesterol, while the most abundant proteins are myelin basic protein (MBP), 

proteolipid protein (PLP) and cyclic nucleotide phosphodiesterase (CNP). The 

importance of each of this components in function has been determined through 

transgenic mouse models, in which mice lacking myelin proteins such as CNP or PLP 

have shown axonal degeneration [17], [18]. 

 

 

 

 

 

 

 

 
Figure 4. Neural activity induces myelination by stimulating the differentiation of OPCs into 
myelinating oligodendrocytes (OL) [19]. 

 

In the CNS, myelin comprises the 50% of the dry weight of white matter, where 

mainly myelinated axons are found, although myelinated fibres are also found in 

grey matter. As mentioned before, myelin provides electrical insulation to the 

neuronal axon, enabling a fast and energetically efficient transmission of action 

potentials. The speed of transmission is influenced by the ratio between the myelin 

sheath thickness and the axon diameter, named the g-ratio, which is around 0.7 in 

healthy axons [20]. The extent of myelination, and therefore the g-ratio, is regulated 
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by neural activity due to the cross-talk between oligodendrocytes (the producers of 

myelin) and neurons [21]. Interestingly, mice that have learnt to run on a complex 

running wheel have shown increased myelinating cell proliferation [22]. 

Additionally, myelin may provide trophic support to axons mediating axon-

oligodendrocyte interaction [23], [24]. Lactate has been put forward as a candidate 

compound for meeting the high energetic axonal demand. In fact, it has been shown 

that axonal degeneration takes place when lactate release through the 

monocarboxylate transporter 1 (MCT1) is disrupted in oligodendrocytes [23]. The 

production of lactate in oligodendrocytes might be regulated by glutamate mediated 

axonal signal and released through the axo-myelinic synapse [24], [25]. 

3. Demyelination and remyelination. 

Demyelination is the pathological process by which the myelin membrane is 

damaged. This can be caused by several reasons such as autoimmune reactions, 

infectious agents or trauma.  

Regardless of the triggering cause and pathway, demyelination leads to a disruption 

of the signal conduction, as a consequence of the uneven distribution of Na+ and K+ 

channels along the axon, and in case an inflammatory response takes place, by the 

hazardous effects of extracellular compounds such as nitric oxide (NO), proteases, 

excitotoxins or chondroitin sulphate proteoglycans (CSPGs) [26], [27]. In this 

setting, denuded axons are prone to degenerate leading irreversibly to neuronal 

loss. Indeed, degeneration of chronically demyelinated axons is a major contributor 

to disability in MS patients and other pathologies.  

This condition can be reverted through different ways including redistribution of 

Na+ channels to restore the conduction of the electric impulse. This is enabled by the 
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migration of channels from the nodes of Ranvier all along the internode [28]. 

Nevertheless, this turns the conduction into a more demanding process in terms of 

energy. In case of such energy increment cannot be met, toxic levels of Ca2+ 

accumulate in the axons, leading to proteolytic enzyme mediated degeneration [29]. 

The absence of myelin might also make challenging the communication between 

axons and oligodendrocytes. Indeed, it has been described that axonal degeneration 

induces oligodendrocyte death, revealing the importance of the axon-

oligodendrocyte cross-talk [17]. 

In order to prevent axonal degeneration, and in the end disability, remyelination is 

of utmost importance. This neuroprotective process consists in the restoration of 

myelin sheath, ensuring axonal viability. For the completion of remyelination, 

signalling molecules released by microglia and astrocytes, activate the proliferation 

of oligodendrocyte precursor cells (OPCs), existing in the subventricular zone. Next, 

OPCs recruitment at lesion site takes place. These cells have shown a high migrating 

capacity compared to neurons and other glial cells [30]. In embryonic mice, OPCs 

have shown to migrate by closely interacting and attaching with brain blood vessels, 

keeping their undifferentiated state until their arrival to demyelinated sites [31]. 

Certainly, endothelium in vascular vessels might play an important role in regulating 

the differentiating stage of OPCs [32].  

OPCs differentiation starts with a substantial morphological change followed by 

attachment to the axon, expression of myelinating genes and the formation of myelin 

sheaths, boosted by growth factors, cytokines, chemokines, signalling molecules, 

transcription factors or mRNA, secreted by several cell types [33].  

A characteristic feature of remyelinated axons is that they possess a thinner myelin 

membrane yielding in decreased g-ratios. In any case, still efficient conduction of 
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action potentials may be achieved, preventing axons from total degeneration. 

Efficient and accelerated remyelination in response to a demyelinating insult can 

avoid extensive axonal loss [34]. Of note, even though OPCs are the main source of 

mature oligodendrocytes, neural progenitor cells (NPCs) are also able to 

differentiate into myelinating oligodendrocytes. 

 

 

 

 

 

 

 

 

 

 
Figure 5. Axonal fate after demyelinating insult. Myelin can be restored through remyelination, 
providing enough insulation to the axon to prevent its degeneration. Adapted from [35]. 

 

However, remyelination very often fails after a demyelinating insult [36]. 

Unsuccessful completion of proliferation, migration and differentiation or even 

exhaustion of the pool of precursor cells might lie behind failed attempts of 

remyelination [37]. Certainly, many factors inhibit the recruitment or differentiation 

of OPCs during demyelination, including altered extracellular matrix, astrogliosis, 

presence of myelin debris, or downregulation of growth and trophic factors [38].   
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Post-mortem analysis conducted in multiple sclerosis patients has described 

undifferentiated OPCs populations around lesions [39], [40], which might be due to 

failed differentiation or to insufficient recruitment of OPCs, since cell density is 

crucial to accomplish differentiation. Nevertheless, the enhancement of OPC 

recruitment has not been effective in boosting remyelination by itself [41].  

In this context remyelination therapies targeting differentiation could boost efficient 

and sharp remyelination by the implantation of exogenous cells that could promote 

this process, or by boosting endogenous remyelination by, for example suppressing 

the aforementioned inhibitory factors or by boosting the existing mechanism. Even 

though there is no approved therapy yet to promote remyelination, during the last 

years remyelination therapies are been addressed both in animal experimentation 

and human clinical trials.  

4. Remyelination as an strategy for various neurodegenerative 

pathologies 

Myelin is essential for the proper functioning of the nervous system. Myelination is a 

postnatal process that is completed during adulthood [42]. This has been confirmed 

by magnetic resonance imaging (MRI) measurements of fractional anisotropy (FA), 

which have shown that white matter content increases during the first three 

decades of life, peaking at middle age and decreasing thereafter. On the contrary, 

myelin regeneration takes place throughout the whole life, losing efficiency with 

aging. Constituent proteins and lipids of myelin are replaced with a half-life ranging 

from several weeks to months [43]. Alteration of the natural balance between the 

generation of new myelin versus the digestion of replaced sheaths leads to 

pathological processes that can be devastating for the patient, with significant 

alteration of basic functions and decline of cognitive capacities. The imbalance can 
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be triggered as a consequence of aging or by pathologies such as multiple sclerosis 

(MS), Alzheimer’s disease, stroke, optic neuritis, etc. 

Thus, the study of myelin composition and function and the understanding of its loss 

(demyelination) and restoration (remyelination) are needs of paramount 

importance for the development of efficient therapies against demyelinating 

diseases, and to facilitate a healthy and active aging. Along the next sections, the 

main causes of demyelination are briefly described. 

4.1. Multiple sclerosis 

Multiple sclerosis is an autoimmune disease of the central nervous which results in 

demyelination. In 85% of cases, the disease is not progressive but manifested in the 

form of relapsing-remitting periods, in which an abrupt attack of immune T-cells to 

myelin sheaths, enabled by the disruption of the blood-brain barrier, is followed by a 

remission of this process. As a consequence of inflammation, many other 

pathophysiological processes take place in the CNS detectable by MRI, such as 

oxidative stress, mitochondrial damage, glutamate mediated excitotoxicity, iron 

accumulation, sodium accumulation, demyelination and cellular and axonal loss 

[44]. In this condition, demyelinating lesions or plaques show up heterogeneously 

distributed throughout the CNS. 

During the first stage of the disease, remyelination is extensive in a subset of 

patients, enabling the recovery of functional deficits [45]. However, this 

regenerative process progressively loses its efficiency, leading to a progressive 

phase in which the patient usually undergo cerebral atrophy, axonal degeneration 

and cognitive decline. This is thought to be caused by continuous demyelinating 

insults along with disease progression and aging [46]. Moreover, post-mortem 
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studies conducted in humans revealed the presence of undifferentiated OPCs around 

of chronically demyelinated plaques or the absence of OPCs [47], indicating that in 

this phase remyelination is not further taking place at significant levels [39].  

 

 

 

 

 

 

 
 
 
Figure 6. Radiological signs of Multiple sclerosis with a typical distribution of lesions as 
observed in MRI. (A) T2-weighted, (B) T1-weighted, and (C) Gadolinium contrast enhanced T1-
weighted MR images showing demyelinated plaques in multiple sclerosis patients [48]. 

 

Currently approved therapies against MS target the modulation or suppression of 

the immune system. This has successfully led to an important reduction of relapses 

and a much slower progression of the disease [49]. However, therapies addressing 

remyelination or neuroprotection have not been approved yet. In consequence, 

patients are condemned to suffer the consequences of already happened 

degeneration, even in the absence of relapses [50].   

During the last decades, research in MS has set focus on promoting remyelination. 

Several treatments have proved efficiency in preclinical models. However, all the 

therapies in this direction that have succeeded in animal studies finally failed in 

humans. At this moment the antihistamine Clemastine fumarate has shown to 
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reduce significantly the visual evoked potentials (VEP) in chronic demyelinating 

optic neuropathy by inducing remyelination [51]. According to previous studies, this 

improvement might be achieved by boosting OPCs differentiation into 

oligodendrocytes [34]. Finally, Temelinab, ((GNbAC1) an humanized antibody 

directed against the envelope protein (ENV) of multiple sclerosis associated 

retrovirus (MSRV)), has also shown remyelinating properties in clinical phase II 

[52], while the remyelinating potential of Fingolimod, a sphingosine 1-phosphate 

(S1P) receptor analogue and currently an MS approved drug as immunomodulator, 

is still inconclusive [53], [54]. 

4.1. Optic neuritis 

Optic neuritis (ON) is the most common visual neuropathy [55], with an incidence of 

1 per 100.000 people [56] and it is characterized by subacute visual loss. Usually, it 

is presented as a T cell-mediated inflammatory demyelinating disorder of the optic 

nerve [57], cursing with inflammation and oedema. Recovery starts approximately 1 

week after the onset of the disease and, although patients usually recover almost 

completely their original visual capacities, consequences as impaired visual acuity, 

contrast sensitivity or colour vision remain [56].   

Currently, steroids are generally used to slow down the attack but do not tackle 

nerve repair [58]. However numerous treatments are being tested in clinical trials at 

different stages targeting repair, all of them (except Anti-Lingo-1) were actually 

approved for other uses, such as simvastatin and erythropoietin alpha [56].   

It has been described that optic nerve conduction velocity, measured as visual 

evoked potentials (VEP) tightly related to remyelination and ion channel 

reorganization, decrease during the first 2 years after the onset of the NO [59], [60], 
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indicating a (at least partial) restoration of signal conduction, and suggesting that 

function recovery might be achieved owing to remyelination processes. 

Unfortunately, no clinical improvements have been associated with a long-term 

decrease of VEP so far [59], [61], [62].  

4.2. Leukodystrophies 

Leukodystrophies are genetic disorders characterized by its heterogeneous 

manifestation and progressive nature, leading to alterations in white matter 

composition. They result from abnormalities in astrocytes, oligodendrocytes or 

other non-neuronal cell types [63]. These defects could affect lysosomal function, 

peroxisomal function, oligodendrocyte myelogenesis or astrocytes, preventing them 

from supporting remyelination in the CNS [35].  

At the experimental level, the focus of researchers is set on genetic-based therapies 

through lentiviral adeno-associated virus vectors [64]–[66], and hematopoietic stem 

cells-based therapies [67], with promising results against adrenoleukodistrophies. 

Effects of stem cells go way beyond the replacement of abnormal cells, since they can 

improve the microenvironment, enabling glia maturation and white matter repair. 

Leukodystrophies damage go way beyond myelin. The complexity of these disorders 

might call for multimodal therapies that can avoid axonopathy and vasculopathy 

[68]. Of note, growing scientific evidence confirms that axonal function does not only 

depend on myelin integrity, but also on the support provided by oligodendrocytes 

and astrocytes. Hence, remyelination therapies aimed only at differentiation, 

migration or proliferation of progenitor oligodendrocytic cells might fail in specific 

cases. Remyelination therapies together with gene or cell therapies in demyelinating 

leukodystrophies may be much more effective. 
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4.3. Aging 

One of the most common causes of myelin loss is aging, defined as the time-

dependent functional decline that affects most living organisms [69]. With aging, 

myelin digestion may become a challenging process for microglia, leading to the 

accumulation of lipofuscin granules in lysosomes in the elderly. Apart from the 

accumulation of these granules, myelin malformations are also characteristic of 

aging. Histological studies carried out in non-human primates have revealed the 

presence of myelin “balloons” [70], dense cytoplasm inclusions surrounded by 

myelin sheaths, and redundant myelin [71]. These abnormalities have been also 

seen in toxic demyelinating models and as a consequence of traumatic brain injury 

(TBI) [72]. Even though their cause is unknown, the presence of redundant myelin 

seems to decrease the conduction velocity, characteristic of elder subjects [73]. 

 

 

 

 

 

 

 
Figure 7. Electron microscopy of aged non-human primate (rhesus monkey) brain. Myelin 
abnormalities are shown. Myelin balloons (A), redundant myelin (B) and remyelination (C) 
were observed in healthy rhesus monkeys [73]. http://www.bu.edu/agingbrain/ 

 

Moreover, aging might be associated with white matter volume and weight loss [74]. 

Certainly, the weight of the brain was shown to be 11% lower in people aging 86 
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years or more, compared to young adults [75]. This value represents 150 g of tissue, 

assigned to cellular, myelin and fluid losses. In addition, post-mortem human 

histological studies revealed that demyelination in the periventricular and diffuse 

white matter might be associated to high Clinical Dementia Ratings (CDR) [76].  

The increasing degeneration throughout life is not surprising, since regenerative 

processes lose their efficiency with age in most tissues [77]–[79]. Animal models 

have shown that remyelination after a demyelinating insult is completed within 4 

weeks in young rats, while it takes up to 9 weeks in aged ones [80].  

Environmental signals regulating remyelination, exhaustion of the pool of precursor 

cells, epigenetic changes [78], accumulation of myelin debris, failure in OPCs 

recruitment, or the incapability of OPCs to differentiate are among the main causes 

of the loss of efficiency in myelin regeneration processes [35], [81]. Both delayed 

recruitment of OPCs and a decrease in OPCs differentiation have been observed 

following the induction of demyelination in aged animals. Interestingly, 

heterochronic parabiosis (parabiotic pairing of two animals of different ages) where 

blood factors from young mates stimulate the differentiation of OPCs in the older 

mates, showed effective remyelination in aged models of spinal cord injury [82].   

4.4. Stroke 

Stroke is a leading cause of mortality and disability [83]. It is caused by a focal 

disruption of blood flow to the brain, mainly due to an artery occlusion (ischemic 

stroke) or rupture (hemorrhagic stroke). Stroke onset triggers a series of metabolic 

alterations in the brain that causes the death of cells of the neurovascular unit by 

apoptosis and necrosis [84]. The so-called ischemic core is the most affected area of 

brain tissue, with a rapid cellular loss. Conversely in the ischemic penumbra or peri-
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infarct region, a reduced but not completely suppressed blood flow enables the 

eventual survival of cells. This makes the penumbra the major target for 

neuroprotective strategies [85].  

For ischemic stroke (which accounts for the 80% of all strokes) restoration of blood 

flow in the first hours after an ischemic insult, either by surgical removal of the clot 

of by using recombined tissue plasminogen activator (rtpA), is the only currently 

approved treatment at the acute phase of the disease [86]. 

While preventing the extension of damage from the core to the peri-infarct region is 

important, the enhancement of reparative processes seems to be vital for functional 

recovery of the patients. The metabolic cascade after stroke results in 

oligodendrocyte death and subsequent demyelination, observed both in humans and 

rodents [87], [88]. Interestingly, diffusion MRI revealed that demyelination in the 

corpus callosum correlates with impaired motor function, after subcortical stroke in 

humans [89].   

Microenvironment at the penumbra may represent a daunting challenge for tissue 

and function restoration. Increased levels of apoptosis, inflammation, free radicals, 

nitric oxide, glutamate or many other compounds resulting from the biochemical 

cascade triggered by the stroke, substantially hamper oligodendrogenesis [85]. 

Although OPCs proliferation has been reported, the differentiation into maturing 

oligodendrocytes frequently fails after stroke [90]. 

After the daunting cell loss, the organism enhances OPCs proliferation and inhibits 

differentiation into myelinating oligodendrocytes, in order to maintain a constant 

pool of precursor cells [91]. This has been reported to be performed by different 

signals, such as Wnt of Notch [92], [93]. Similarly, Nogo receptor 1 (NgR1) signalling 

pathway stimulates the differentiation of OPCs into astrocytes after stroke [94]. 
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Hence, remyelinating potential therapies in stroke are focused on overcoming the 

inhibitory signals that avoid the differentiation of oligodendrocytes.  For instance, 

the treatment with a Nogo receptor NgR1 antagonist [94], with Wnt-3a, the 

inhibition of phosphodiesterase III [95], or the cannabinoid antagonists WIN55, 

212/2 [96] have all shown to promote remyelination. 

 

 

 

 

 

 

 

 

 
 
 

Figure 8. Biochemical cascade triggered by the ischemic insult. Adapted from [97]. 

 

Similarly, bone marrow stromal cell mediated [98] or mesenchymal stem cell  

derived extracellular vesicles [99] [100] have shown effectiveness in promoting 

OPCs differentiation and subsequent remyelination [98].  

4.5. Alzheimer 

Alzheimer’s disease is characterized by the accumulation of β-amyloid plaques (Aβ) 

and the formation of neurofibrillary tangles (NFT) in the brain, resulting in a decline 
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of cognitive function. However, how both Aβ and NFT influence the pathogenesis of 

Alzheimer’s disease is not yet completely understood [101]. For a long time, 

Alzheimer’s disease has been attributed in a great extent to Aβ plaques [102], but 

therapies aimed at lowering Aβ plaques have not been successful so far in human 

trials [103]. For this reason, the role of NFT and the damage to myelin are currently 

being considered crucial in the progression of the disease, instead of setting the 

focus only on Aβ [104], [105]. 

Post-mortem studies have shown an elevated concentration of degraded myelin 

basic protein complex in Alzheimer's disease human brains, as well as deposition of 

MBP at the margins of the Aβ plaques [106]. Furthermore, several myelin-related 

proteins have been associated with amyloid proteins [107]. Although the triggering 

factor has not yet been elucidated, myelin-related abnormalities have been observed 

prior to amyloid- and tau-associated pathology, in animal models [108]. 

 

 

 

 

 

 

 

 
 
 
 
Figure 9. Possible pathway for neurodegeneration and white matter damage in Alzheimer's 
disease Adapted from [103].  
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It is believed that microenvironment in this disease might induce oligodendrocyte-

linage cells death, as reduced populations of such cells have been found in areas 

with axonal damage and secondary myelin breakdown in patients [109], [110]. 

Moreover, in vitro studies have shown that beta amyloid peptides are not only toxic 

for mature oligodendrocytes but also for OPCs [111]–[113]. 

Current therapies in humans are focused on controlling Alzheimer’s disease 

symptoms (such as deficit in episodic memory, language difficulties or global 

cognition impairment) and preventing the progression of the disease, rather than 

restoring the damage. Nevertheless, an approved drug for the treatment of the 

disease, Donepezil, has recently exhibited the capacity to enhance OPCs 

differentiation and promote remyelination in vivo, in the cuprizone mouse model 

[114]. Its contribution as a remyelinating therapy for Alzheimer’s disease has not 

been elucidated yet. 

Currently, the scientific community agrees on the importance of identifying pre-

symptomatic markers of disease, before reaching hardly restorable levels of damage 

[115]. In this quest, the use of imaging technologies might be essential for detecting 

microstructural alterations, useful as early markers of disease [116], and enabling a 

prompt treatment. In this direction, a recent study has shown a positive effect of 

LINGO-1 antibody in early stages of the disease, when demyelination is detected in 

MRI, but Aβ deposition has not been observed yet [117]. Interestingly, LINGO-1 

antibody has previously failed to succeed in clinical trials of MS but is still being 

considered for its remyelinating capacity exhibited in clinical trials [117], [118]. 

Whether or not the onset of Alzheimer’s disease aggravates the natural decline of 

remyelination with age, whether or not this phenomenon is behind the severe 

cognitive decline associated with this pathology (aging is a risk factor for 
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Alzheimer’s disease), and whether or not the use of remyelinating therapies could 

prevent the formation of new Aβ plaques, and promote the functional restoration of 

demyelinated neurons, are still unsolved questions in. 

4.6. Traumatic brain injury 

Impact, acceleration, deceleration, torsion or compression of the brain, mostly 

associated to motor vehicle accidents or sports and military actions, are the main 

causes of traumatic brain injury (TBI). Any of the aforementioned events yield 

different levels of cellular loss, haemorrhage, neuroinflammation, axon damage and 

demyelination, with a consequent functional or neurocognitive deficit [119]–[121]. 

Furthermore, the initial mechanical injury could trigger a series of reactions leading 

to additional damage [122]. Even though a pronounced traumatic axonal injury is 

the direct consequence of TBI, demyelination unrelated to axon degeneration is 

usually observed.  In response to the insult, OPCs proliferate [95], [123] and new 

oligodendrocytes are generated. Importantly, experiments in animal models have 

shown that intact axons are demyelinated 3 days post mild TBI and remyelinated 

one week later [72].  

Therapeutic approaches in TBI are mainly directed to contain associated secondary 

damages. Anti-inflammatory therapies have shown its efficacy in this context. 

Despite the role of acute inflammation in regeneration is not fully understood, it is 

believed that anti-inflammatory therapies might promote remyelination. The 

combined use of Minocycline and N-acetylcysteine has shown remyelination 

potential owing to their anti-inflammatory, anti-apoptotic and antioxidant capacity 

[124]. A similar observation has been made after treatment with Interleukin-1β  

antibody [125] or by the modulatory effect of immune cells by mesenchymal stem 

cells. The use of neural progenitor cells has also been effective in promoting 



 
 
 
 
 
 
 
 

22 | Introduction 

remyelination, restoring motor and cognitive deficiencies. Importantly, it has been 

seen that neural progenitor cells differentiate into oligodendrocytes, instead of 

astrocytes, neurons or microglia [126].  

Together with anti-inflammatory approaches, intervention in the biochemical 

cascade caused by the impact can enhance remyelination. In a study conducted by 

Wu and colleagues, they observed that Vitamin B12 boosted remyelination after TBI 

apparently by avoiding stress-induced neuronal apoptosis  [127]. 

4.7. Spinal cord injury 

Spinal cord injury (SCI) affects substantially the patient’s welfare, not only owing to 

a motor and neuronal dysfunction but also due to pain, spasticity, respiratory and 

cardiovascular alterations [128].  

Like in TBI, the primary damage in SCI triggers a series of biochemical reactions 

leading to secondary damage, characterized by immune cell’s activation, glutamate 

mediated excitotoxicity, haemorrhage, dysregulation of ion equilibrium, ischemia, or 

production of free radicals [129]. Demyelination takes place as a consequence of 

these events, being evident a decade after the injury [130]. Additionally, circa 50% 

of cells are estimated to die around the lesion epicentre [131], [132]  

After the demyelinating insult, remyelination plays an important role in SCI [133]. 

The generation of myelinating oligodendrocytes has been observed even 3 months 

after SCI in mice [134]. However, the extent of remyelination is still controversial. 

Complete remyelination has been described in animal models [135], [136], as 

opposed to the presence of chronically demyelinated axons previously described 

after SCI [137]. In any case, the enhancement of remyelination through therapies 

might enable a functional recovery. 
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Several molecules have been proposed as remyelinating agents for the treatment of 

spinal cord injury, as extensively reviewed by Mekhail and colleagues [138]. The 

remyelinating effect of these compounds might lie in the protection of existing 

oligodendrocytes or in the promotion of OPCs proliferation and differentiation.  

In addition, remyelination might be also facilitated by the use of biomaterials [139] 

or cell therapy. Several cell types such us, OPCs, Schwann cells, olfactory 

ensheathing cells, neuronal progenitor cells or neurotrophic factors secreting cells 

have been used to treat SCI, resulting in improved functional recovery in animal 

models [126], [140].  

4.8. Towards multimodal therapies  

As we have seen above, demyelination can be triggered by different pathways, such 

as genetic abnormalities, inflammatory attacks or oligodendrocyte death, resulting 

in neuronal death and cognitive decline. Demyelination is a common feature in many 

pathologies of the CNS and goes way beyond multiple sclerosis. Therefore, therapies 

aiming at remyelination, initially designed for the treatment of MS might actually be 

applied in other pathologies.  

During the last years multiple potential remyelination therapies have been put 

forward. Such therapies can enhance both the recruitment and the differentiation of 

OPCs. Due to the common features of de- and remyelination, the development of 

remyelinating strategies is of great interest for application to different pathologies.  

A clear example is the antibody against the inhibitory Nogo-A protein. Nogo-A 

protein regulates axonal growth and internode length during myelin formation. After 

an injury, it has been shown that it restricts plasticity and neuronal growth. 

Inhibition of this protein has led to increased levels of plasticity, axonal regeneration 
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and remyelination in animal models of multiple sclerosis, stroke or spinal cord 

injury [141]–[143] leading to functional recovery. Similarly, the antihistaminic 

Clemastine has shown to enhance myelin repair in several mouse models such as the 

cuprizone and lysolecithin toxic models, a model of hypoxic brain injury and murine 

models of social isolation [144]–[147], among others. 

All in all, brain injury very often involves demyelination together with further 

damage. In this context, cellular therapies might be helpful for the achievement of a 

regenerating atmosphere. The application of combined therapies focusing on 

different aspects of the pathology might have a synergic effect, as shown by the 

application of minocycline along with N-acetylcysteine after traumatic brain injury 

[148]. Moreover, in pathologies such as leukodystrophies, the application of only 

remyelination therapies might not be enough. 

In this context, the growing evidence describing the reduced capacity of 

remyelination in aged individuals, the incompletely understood causes of 

demyelination, and the promising effectiveness of remyelinating therapies, support 

the need for effective experimental methodologies to study these phenomena. 

5. Experimental models for the study of demyelination and 

remyelination  

The study of how to prevent myelin damage and how to enhance its restoration 

requires suitable experimental models that allow the study of the underlying 

mechanisms of demyelination and remyelination. Current rodent models are based 

on features of MS, and the complexity of this disease makes difficult deciphering the 

contribution of single pathological events, hampering our deep understanding of the 

phenomena of demyelination and remyelination in their whole complexity.  
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Although none of the existing models presents the general features of MS, each one 

enhances a different aspect of the disease. Thus, these models can be considered 

complementary and can provide further insights about the effect of a therapy or the 

mechanism by which proliferation, differentiation and myelination take place. The 

use of a given model will, therefore, depend on the aim or target of a given study. Of 

note, as it will be explained later, although models for the study of demyelination 

and remyelination have been mainly developed to address multiple sclerosis, they 

share common characteristics with several other pathologies, enabling their use for 

the study of different diseases. In the following section we will analyze currently 

available in vitro, ex vivo and in vivo models for the study of demyelination and 

remyelination, highlighting the applications, strengths and weaknesses of each one. 

5.1.  In vitro models  

5.1.1. OPC cultures 

Myelination of neural axons requires the proliferation of oligodendrocyte precursor 

cells (OPCs), their migration toward the lesion site, and their differentiation into 

mature oligodendrocytes. Although OPCs migration has been studied using 

transwells, OPCs cultures are more commonly used to study of the proliferation and 

the differentiation steps [149].  

Each differentiation step of OPCs is characterized by the expression of given 

proteins. Precursor cells express the platelet derived growth factor (PDGFR) and the 

neuron-glial antigen 2 (NG2). On the contrary, at the most advanced stages of 

differentiation, myelin proteolipid protein (PLP), myelin basic protein (MBP), 

myelin oligodendrocyte glycoprotein (MOG) or the myelin-associated glycoprotein 

(MAG) are expressed (Fig. 10). All cells belonging to the oligodendrocyte lineage 



 
 
 
 
 
 
 
 

26 | Introduction 

express the oligodendrocyte lineage transcription factor 2 (OLIG 2) [37]. Moreover, 

the markers 5-bromodeoxyuridine and caspase-3 can be used as markers of 

proliferation and cell death respectively. The use of fluorescence microscopy, 

cytometry or gene expression analysis can allow distinguishing the differentiation 

stage of cells [150], [151]. All in all, OPCs in culture is a simple and quite 

interpretable model. Potential therapies can be easily assessed in an environment 

with little interference before testing them in ex vivo or in vivo models. 

 

 

 

 

 

 

 

 
 
 
Figure 10. Oligodendrocyte precursor cell maturation. At each maturational stage, different 
proteins are expressed by cells, allowing their specific characterization. PDGFR-α, O4, CNPase, 
MBP and MOG correspond to protein expression. Adapted from  [152]. 
 
 

5.1.2. Axon-based models 

OPCs cultures allow monitoring of proliferation and differentiation of these cells but 

they do not tackle the study of myelination itself. This handicap can be overcome by 

the so-called axon-based models, in which axons derived from rats or mice 
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embryonic spinal cord explants, or synthetic axons, are used along with OPCs [153], 

[154]. The complexity of the spinal cord explants is higher as they include the 

presence of other cells of the CNS, while synthetic axons do not. 

So far, in vitro models are mostly limited to these two options and they are designed 

to study very particular aspects of OPCs biology, or of the interaction of OPCs with 

axons. For the study of more complex aspects of myelination, more complex models 

are required. 

5.2.   Ex vivo models: Organotypic cultures 

Brain organotypic slices kept in culture are a simple method to study myelin-related 

pathologies in their full complexity, since they preserve neural connections and 

cellular organization [155]. These cultures can be prepared from different regions of 

the brain, such as the hippocampus, brain stem, spinal cord or cerebellum with their 

original features, allowing to study the specific particularities of the process in 

different brain regions [156]. Hence, models for the study of Parkinson’s disease, 

Huntington’s disease and MS have been described in the literature [155].  

Since the cerebellum of rodents contains an homogeneous axonal architecture, it has 

been put forward as an appropriate model for the study of remyelination and 

demyelination [156]. Briefly, cerebellum extracted from mice at post-natal date 7-12 

is sliced in sections of 300- semipermeable membranes. 

Next, brain slices have to be cultured for a period of at least 7 days in order to enable 

the cerebellum slice to adapt to the new medium and recover from the impact. At 

this point, the detergent lysophosphatidylcholine (lysolecithin) can be added to the 

medium to achieve extensive demyelination [157]. Following the demyelinating 

insult, remyelination is conducted spontaneously within the following days [158]. 
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This process can be boosted by the use of remyelinating agents or by the 

implantation of exogenous cells. To achieve this aim, the use of cytosine arabinose is 

recommended to suppress the proliferation of endogenous cells [159]. 

Interestingly, cutting brain slices results in axotomy, which may result in neuronal 

loss. However, a reorganization of those axotomized neuronal axons is accomplished 

[160]. The most determinant sign of the survival of the culture is the observation of 

its thinning, becoming increasingly translucid. In addition, even though attempts 

have been conducted to thrive slices derived from older mice [158], [160] and with 

large slice thickness [161], the survival and regeneration capacity of such cultures is 

compromised. 

 

 

 

 

 

 

 

 

Figure 11. Organotypic culture immunofluorescence image acquired in a confocal microscope. 
Myelinated axons (left) and demyelinated axons (right) are shown. Myelin is shown in red. 
Axonal neurofilament in green. Image acquired by Iñaki Osorio-Querejeta. 

 

The monitoring of myelin can be performed by RT-PCR, western blot or 

immunofluorescence [162]. This last strategy consists in staining separately axons 
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and myelin. As such, co-localization of channels would reveal myelinated axons (Fig. 

11). Long-term live imaging can be also performed with organotypic cultures 

transgenes expressed in mice [163]. 

5.3. In vivo models 

5.3.1. Zebrafish 

Zebrafish is a vertebrate model that should be outlined due to its rapid development 

and its transparency, that makes possible to directly visualize internal structures 

under the microscope [164]. Additionally, it is easy to manipulate genetically and it 

has shown to be an appropriate model in neuroscience research. Such features 

position the zebrafish as a suitable model for high-throughput screening of therapies 

and studies of genes related to myelin regulation [165]. Nevertheless, the 

therapeutic use of exogenous cells can be challenging in this model. 

Interestingly, in this species oligodendrocytes wrap axons as seen in mammals 

[166]. The direct visualization of myelination and demyelination process is allowed 

by the use of genetically manipulated zebrafish, emerging as a very clarifying model 

for the study of intercellular interactions during these processes. However, it should 

be considered that myelin structure is not exactly the same for zebrafish as for 

mammals. While in the CNS of the zebrafish P0 protein is abundant, this only exists 

in the peripheral but not in the central nervous system of mammals [166]. 

So far, zebrafish has mainly been used for the study of remyelination and OPCs 

differentiation [167]. Demyelination can be induced by genetic cell ablation models 

through laser [168] or by toxic compounds such as lysolecithin. Moreover, even 

though the difference between zebrafish and mammals regarding their immune 

system is substantial, the development of a model that mimic human MS, despite its 
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limitations and particularities, is quite useful. The EAE zebrafish model, for instance, 

presents paralysis, reduced body weight and microglia activation [169]. 

The assessment of myelination can be done by several techniques such as in vivo 

fluorescent labelling, fluorescence transgenesis or whole-mount 

immunohistochemistry (IHC) [170]. The expression of a fluorescent protein by 

oligodendrocytes, for instance, allowed the monitoring of the myelination process 

by time-lapse in vivo microscopy [168]. 

5.3.2. Mammalian models 

5.3.2.1. Toxicity-based models 

These models are based on the use of a toxic compound to induce demyelination. 

The mechanism of administration and the pathway by which the damage is caused 

differ for the two most widely used models: the lysophosphatidylcholine 

(lysolecithin) and the cuprizone model will be analyzed. 

5.3.2.1.1. Lysophosphatidylcholine (LPC) 

Focal administration of lysophosphatidylcholine (LPC), to rodents white matter 

tracts produces extensive demyelination, similarly to what happens when LPC is 

administered in organotypic cultures. Interestingly, LPC is an endogenous 

lysophospholipid correlated with obesity [171], coronary artery disease [172] and 

aging [173]. The role of endogenous LPC in myelin damage, however, is still unclear.  

The exogenous administration of LPC in the white matter leads to demyelination 

through cellular toxicity, leading to glial cell death. Plemel and colleagues 

hypothesized that LPC causes an increase in cellular membrane permeability at high 

concentrations due to its lipid disrupting properties [174]. Myelin could be also 
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directly altered through the same mechanism [175]. 

The induction of demyelination in rodent consists in the focal administration of LPC 

in the spinal cord or in brain regions such as the corpus callosum or the cerebellar 

peduncles by stereotaxic injection [176], [177]. Usually, an injection of 2 µl of 1% 

LPC is enough to induce noticeable damage [178].   

Following demyelination, microglia and macrophages migrate toward the lesion site, 

astrogliosis takes place and axonal homeostasis is disrupted [179]. After the 

application of LPC in rodent spinal cord, myelin disturbance was observed as soon 

as 30 minutes, and remyelination was evident 7 days after injection, being 

completed at day 23 [178]. Immunochemistry [174] or MRI [180] have shown to be 

effective to assess myelin pathology in this model. 

It should be mentioned that even though it is not reviewed in this work, ethidium 

bromide has also been used as a demyelinating agent in a similar fashion [181]. The 

toxicity of ethidium bromide lies behind its intercalating properties in the DNA 

structure, leading to an extensive astrocyte and oligodendrocyte death [182]. 

Nevertheless, it is not widely used as a demyelinating model, probably due to the 

carcinogenic nature of the compound.  

5.3.2.2. Cuprizone mouse model 

The cuprizone mouse model is the most widely used toxicity model of 

demyelination. Demyelination is achieved by administration of the copper chelator 

cuprizone (bis-cyclohexanone oxaldihydrazone) at 0.2-0.3% (w/w) through the diet 

for a period of 4-6 weeks.  After the withdrawal of the toxic from the diet, robust 

remyelination is exhibited already after 4 days and is completed during the 

following weeks [183]. Certainly, the extent of demyelination and the severity of the 
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model depend on the strain of mice, age and the dose used [184]. The most common 

practice is to use mice of the C57BL6/j of eight weeks of age, feeding them with a 

0.2% (w/w) cuprizone diet for 4-6 weeks.  However, the administration of 

cuprizone for a period of 12 weeks is also used as a chronic model of demyelination, 

where extensive axonal loss and delayed remyelination is observed [185], [186].  

The main strengths of this model are its simplicity, reproducibility and the extensive 

and progressive demyelination that mice undergo in several regions of the brain, 

such as the cerebellum or the corpus callosum. In addition, demyelination in grey 

matter regions has also been described [187]. Even though the integrity of the 

blood-brain barrier in this model is a matter of discussion [188], [189], immune T 

cells might not be involved in damage, contrarily to what happens in MS. 

The intake of cuprizone results in an extensive selective oligodendrocyte loss. 

Growing evidence suggests that mitochondria are susceptible to cuprizone, causing 

cell loss and secondary demyelination. Even though the mechanism of action of 

cuprizone is inconclusive, it is suggested that its activity as copper chelator can 

interfere in the electron transport chain. Certainly, copper is present in several 

complexes of the mitochondria [190]. Chelation, therefore, might decrease 

adenosine triphosphate production and increase reactive oxygen species, triggering 

the damage. Electron microscopy analyses have revealed mitochondrial swelling 

after exposure to cuprizone [191]. Interestingly, OPCs are able to survive to 

cuprizone exposure due to their slower metabolism [192]. 

In response to the demyelinating insult, microgliosis and astrogliosis are prominent 

in the cuprizone mouse model after three weeks of administration of cuprizone 

[193]. While microglia takes care of the removal of myelin debris, astrocytes seem to 

interact with OPCs, mature oligodendrocytes and microglia, to support 
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remyelination [194]. One week after the withdrawal of cuprizone from the diet, 

when remyelination has already started, microgliosis is absent, while astrocytes are 

still active in the demyelinated regions [184]. Nevertheless, Manrique-Hoyos and 

colleagues observed that although remyelination causes a recovery of the 

behavioural deficits provoked as a consequence of a 5-week exposure to cuprizone, 

motor deficits were appreciable after 6 months of exposure to cuprizone [195].  

The cuprizone model has emerged as a suitable model for the evaluation of 

remyelinating therapies. In this setting, MRI is becoming very useful for the 

longitudinal evaluation of remyelination in a non-invasive manner [196]–[199]. 

Additionally, Luxol fast blue staining [200], electron microscopy [201], 

immunohistochemistry [202] and immunofluorescence [203] are also used for the 

invasive evaluation of myelin. 

5.3.2.3.  EAE model 

The EAE model is probably the most commonly used model in MS research due to 

their histopathological similarity with the human pathology. In this model the 

demyelinating insult is mediated by autoimmune inflammation. The attack of the 

immune system can be triggered through two main approaches: the first and the 

most common, consisting in the injection of a myelin protein such as PLP, MBP or 

brain emulsion with Freund’s adjuvant and pertussis toxin. The second approach 

consists in transplanting active cells against myelin [164]. In addition, acute 

monophasic, relapsing-remitting and chronic progressive inflammation models can 

be induced depending on the type and dose of immunization agent used [204]. 

The EAE model exhibits blood-brain barrier disruption after the onset of the disease, 

resulting in infiltration of immune cells into the cortex, spinal cord and cerebellum 
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during the 50 days following induction [205]. Macrophages and T cells are the major 

infiltrated populations in the CNS in this model [206]. 

Owing to its similarity with MS, the EAE model has become a widely used model for 

testing therapies that might suppress or modulate the immune system. 

Nevertheless, this model is highly variable and, in contrast to toxin induced models, 

the extent and distribution of demyelination over time and space may be 

unpredictable. Hence, the evaluation of remyelinating agents is challenging in this 

model. The use of genetically modified lines can facilitate the evaluation of the 

model. In a study conducted by Mei and colleagues, genetically modified OPCs 

enabled the monitoring of newly generated mature oligodendrocyte lineage cells 

and allowed an easier evaluation of the effect of treatments [34].  

The evaluation of a clinical score is a widely used method to assess the effect of a 

given therapy [207]. Moreover, electron microscopy, immunofluorescence, 

histochemistry and MRI are also essential techniques for the evaluation of myelin. 

5.3.2.4.  Viral infection models 

The role that viruses could play in the aetiology of MS is controversial. A viral 

infection early in life, together with a specific genetic background, might cause the 

triggering of the disease [208]. However, further evidence is needed to support this 

hypothesis. 

The inoculation of Theiler murine encephalomyelitis virus (TMEV) into rodents 

results in a progressive chronic demyelinating disease. The infection caused by 

TMEV leads to an autoimmune response that causes inflammatory demyelination. 

The main advantages of this model are its histopathological similarity with MS, the 

extensive demyelination undergone and the MS chronic progressive phenotype 
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exhibited by the mice [209]. Moreover, demyelinating lesions exhibited in MRI 

studies in the TMEV model have shown characteristics of humans MS: lesions found 

in spinal cord, brainstem and brain [210], T2 hyperintense spinal cord lesions [211], 

T1 hypointense in the cerebrum [212], deep grey matter damage [213] and brain 

and spinal cord atrophy correlated to disability [214]. This might be of utmost 

importance to develop specific imaging markers of myelin useful for myelin imaging 

in humans. 

However, as in the EAE model, the lack of control of the temporal evolution of 

myelin damage and remyelination makes it difficult to evaluate the effectiveness of a 

given treatment. Additionally, the long incubation period required to symptoms 

manifestation, the high mortality rate and the technical difficulties related to safety 

issues are further disadvantages of using virus induced models [164].  

5.4.  Selection of the model 

Models for the study of demyelination and remyelination can differ in their 

complexity and in their proximity to the human MS. The selection of the suitable 

model is crucial and depends on the objective of the study.  

Organotypic cultures and OPC cultures represent valuable tools for the high-

throughput screening of therapies due to their simplicity compared to in vivo 

models. Moreover, they allow a better understanding of the mechanism of action of a 

given therapy. Once the efficacy of a drug has been tested in those models, the use of 

a rodent model is highly advisable. Among these, the cuprizone model is probably 

the most simple and reproducible one, offering a clear time-pattern of 

demyelination of remyelination making it suitable for the evaluation of therapies. In 

contrast to toxic models, the EAE model and virus induced models can mimic better 
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the pathophysiology of MS. The application of treatments in these models is of great 

interest to confirm effective therapies in simpler models, albeit challenging. 

6. Experimental techniques for the detection and quantification of 

myelin 

In direct relation to the selection of a proper model, it is very important to consider 

the experimental methodologies of choice for the study of the evolution of the 

pathology, and the effectiveness of the novel diagnostic and therapeutic tools 

developed to treat myelin-related disorders. In this context, it is a priority to 

develop non-invasive techniques for the specific and sensitive detection and 

quantification of myelin content and status. In this section we first analyze invasive 

techniques for the characterization of myelin, mostly based in histopathological 

studies, considered the gold-standard to later focus on the use of magnetic 

resonance imaging, since it is our belief that MRI collects all the required advantages 

to become crucial technology to study of myelin in humans and rodents.  

6.1. Invasive methods: histological techniques  

Myelin is mainly found in the white matter (WM) of the central nervous system, 

accounting approximately for the 50% of its dry weight, and conferring the 

particular white colour of this tissue [215]. Even though it is found in smaller 

amounts, myelin is also supporting and insulating axons in grey matter tissue. This 

spirally wrapped membrane is composed of 80% lipids and 20% proteins, giving 

hydrophobic properties to the sheaths. Indeed, the chemical properties of 

proteolipids, lipoproteins and lipids constitutive of myelin are crucial for its staining 

in histological preparations. 

Precisely, phospholipids (40% of the total lipids of myelin) are the main target of 
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most histochemical staining protocols. Briefly, lipoproteins are not extracted from 

the tissue by the use of organic solvents and hence, the protein-bound phospholipids 

can be stained due to its hydrophobic nature. Similarly, sphingolipids and 

unsaturated fatty acids associated with proteins can also be stained [216]. The 

amphiphilic nature of these molecules, together with the use of an amphiphilic dye, 

results in hydrophobic binding between both molecules in aqueous solution [217].  

Luxol fast blue (LFB) [218] is probably the most widely used histochemical 

technique for myelin staining. Copper phthalocyanine is the key component of the 

staining. The blue colour characterizing this dye is the result of the electronic 

delocalization of the 18π electrons of this molecule. Interestingly, due to these 

features is widely used to synthesize pigments, catalysts and photoconductors [219].  

 

 

 

 

 

 

 

Figure 12. Myelin staining. A) Luxol fast blue staining performed by us B) Anti-MBP 
immunofluorescent staining showing the myelin in green [203]. 

 

The major disadvantage of this staining is that it does not enable single-axon 

staining, either detailed staining of peripheral nerves. LFB staining is usually 

accompanied by cresyl violet staining of cell nuclei based on a cationic dye. Carriel 
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and colleagues also put forward the MCOLL histochemical staining, combining LFB 

myelin staining and collagen fibre staining with the cationic silver red dye [220], 

[221]. In this way, a higher contrast between WM and GM was achieved, enabling 

the visualization of thinner myelinated nerve fibres. 

The quantification of LFB staining can be addressed by differed approaches. The 

most widely used strategies are: 1) Scoring the samples from 0 (full demyelination) 

to 3 (normal appearing myelin) by three blinded observers [183], 2) Measurement 

of optical density (OD) [222], [223], and 3) Normalization of signal with a non-

myelinated region [124]. Although LFB is the most widely used histological staining, 

alternative protocols have been described including Oil Red O, Sudan Black or Black 

Gold staining [224], [225].  

In addition to histological staining, immunohistochemical or immunofluorescence 

techniques can provide a thorough view of myelin. These techniques are based on 

the specific binding of fluorescently labelled antibodies to myelin proteins, such as 

the myelin basic protein or the myelin proteolipid protein [226]. With this approach, 

it becomes possible to observe those proteins inside oligodendrocytes of Schwann 

cells, even before they are incorporated into the myelin membrane [227]. 

Immunofluorescence staining allows the evaluation of cortical myelination integrity 

in a highly accurate fashion [203]. The quantification of myelination can be 

performed by measuring the immunodensity, the stained area, the fibre length or 

the number of intersections.  

A more detailed view of myelin can be achieved by the use of electron microscopy 

and light microscopy together with Osmium tetraoxide (OsO4). This staining 

achieves a black staining of lipidic structures. The principle of this staining lies 

behind the oxidative capacity of OsO4. This compound is reduced by the reaction 
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with the abundant unsaturated lipidic bounds composing myelin, causing the 

deposition of the blackish osmium in myelin [228].  Masson’s trichrome can be used 

to counterstain collagen [221], [228]. One of the most common uses of electron 

microscopy is the measurement of myelin membrane thickness, very often 

expressed as the g-ratio, which measures the ratio between the myelin thickness 

and the axon diameter (diameter of axon/whole fibre diameter). This g-ratio in a 

healthy brain is around 0.6-0.7 [229]. Remyelinated axons are characterized for 

exhibiting thinner myelin sheath and a lower g-ratio. While this effect is pronounced 

in thick axons, such as those in the corpus callosum, in places of predominantly 

thinner axons is much difficult to distinguish remyelinated from healthy axons 

[230].  

Finally, it is worth pointing out an alternative interesting approach was carried out 

by Aharoni and colleagues [231]. Choline is a phospholipid present in myelin. The 

analogue propargyl-choline  has shown the capacity to incorporate in any kind of 

choline phospholipids without causing any detrimental consequence [232]. This 

compound can be visualized by attaching a labelled azide molecule. In their study 

propargyl-choline was intraperitoneally administered to the demyelinating mouse 

model EAE, and to control mice. Once the animals were sacrificed and the staining 

was performed, newly generated myelin was observed. 

6.2. Non-invasive methods: magnetic resonance imaging 

Magnetic resonance imaging (MRI) has emerged as a technique of great interest, 

both in preclinical models and humans, for diagnosis in multiple diseases, for the 

characterization of functional networks, and for the assessment of important 

functional biological systems like the blood-brain barrier or the immune system. 

MRI allows the visualization of biological tissues in a non-invasive manner, without 
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the use of ionizing radiation, which enables the conduction of repeated 

examinations for longitudinal studies. We strongly believe that MRI represents a 

unique tool for the non-invasive assessment of de- and remyelination processes and 

that advances achieved in preclinical research can be readily applied in the clinical 

setting, due to the high traslationality of this technique. In this section, the principles 

of nuclear magnetic resonance will be discussed, so we could better understand how 

it can be applied to assess myelin content and status, and its effects on functional 

and biological aspects such as the organization of functional brain networks during 

de- and remyelination processes.   

6.2.1.  Principles of nuclear magnetic resonance  

After the pioneering work of Isidor Isaac Rabi (Columbia University, NY) in the 

1930s (Rabi was the first person to use the concept “nuclear magnetic resonance” 

and won the Nobel Prize in 1944 for his discoveries), it is generally agreed that 

nuclear magnetic resonance (NMR) phenomenon in bulk materials, as we know it 

today, was first described simultaneously in 1946 by Edward Purcell, Torrey and 

Pound (Harvard University, MA), together with Block, Hansen and Packard 

(Sandford University, CA). Purcell and Block were awarded the Nobel Prize in 

Physics in 1952. NMR has found numerous applications in science and technology, 

including magnetic resonance imaging. However, until the seventies all experiments 

with NMR were focused on measuring the energy absorption and emission of solids, 

liquids and chemical compounds. In 1971 Raymoud Damadian observed different 

relaxation times of healthy tissue and tumours, triggering the medical application of 

NMR. The first steps towards magnetic resonance imaging (MRI) were made by Paul 

Lauterbur in the seventies, who obtained spatial information from a set of tubes by 

applying different gradients to excite protons. A few years later, Sir Peter Mansfield 
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developed the theoretical background for k-space and Fourier based image 

acquisition and processing and invented the first fast imaging technique called echo-

planar imaging (EPI), enabling the development of the vast majority of current 

imaging methods in clinical MRI. Lauterbur and Mansfield shared the Nobel prize in 

medicine in 2003. 

It is far beyond the scope of this work to describe the physical principles of the MRI 

technique. For that purpose, there are excellent manuals [233]–[235]. Instead, a 

basic concept of image contrast and relaxation of magnetization will be discussed 

since both are important for the understanding of the experimental section of this 

work.  

In biomedical imaging, contrast is a term used to define the difference in signal 

intensity between two regions in the object under observation. Such difference is 

quantifiable, in computational terms, as the numerical difference between the 

intensities of pixels (or their three-dimensional equivalents, voxels) in an image, 

which, actually, may not be always appreciable by the naked eye.  

For magnetic resonance imaging, in particular, image signal intensity, and therefore 

contrast, is the result of various contributing intrinsic (longitudinal and transverse 

relaxation times, proton density, diffusion coefficient, etc.) and extrinsic (type of 

acquisition schemes, timing parameters of pulse sequences, strength of magnetic 

field, etc.) parameters [236]. The contribution of all these parameters can be 

summarized in the following equation: 

𝑆 = 𝜌 ×  𝐹1 ×  𝐹2 ×  𝐹3       (1) 

where S represents the signal intensity for a given pixel (voxel) or region of interest 

(ROI). In conventional imaging application, MRI signal is due to protons (nuclei of 

hydrogen atoms), being generally assumed that those are mostly contained by water 
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and fat molecules in the body (other fractions of protons such those forming 

constitutive part of macromolecules have neglectable contribution to signal in 

conventional MRI applications). Thus, in equation (1), ρ represents the water and/or 

fat proton density in the pixel (voxel), and F1, F2 and F3 are three weighting factors 

(0 ≤ F1, F2, F3 ≤ 1) related to the aforementioned intrinsic and extrinsic parameters. 

F1 represents the so-called T1 weighting factor, F2 the T2 weighting factor and F3 

the diffusion related weighting factor. In absence of significant contribution of 

molecular diffusion equation (1) simplifies and in general MRI images are referred 

as proton density weighted images (PD), T1-weighted images (T1w) and T2-

weighted images (T2w) which can be also referred as T2 star weighted images 

(T2*w), as we will discuss later, depending of the most weighting factor in equation 

(1), although mixed or combined weightings are also not unusual. Thus, by 

understanding the intrinsic parameters of matter and their relation to the extrinsic 

parameters that control their influence on signal intensity, it is possible to control 

contrast on MR images, to enhance specific tissues or regions of interest (ROI). 

As already mentioned, the intrinsic parameters depend on the physicochemical 

characteristics of the region of interest which, in the end, are a reflection of the 

biological characteristics of such region (water/fat content, presence of 

macromolecules, pH, temperature, presence of metals like iron, structural 

organization of tissues, intimately related to water diffusion characteristics, etc.). All 

these factors have a direct impact on signal intensity). On the other hand. MR 

scanners are operated by computers and software programs that are commonly 

referred as pulse sequences, which are nothing else than an execution program or 

image acquisition routine, to tell the different components of the MRI scanner how 

and when to operate to acquire an image. Each pulse sequence contains a series of 

extrinsic parameters that the user can tune on demand, to ponderate the weighting 
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factors expressed in equation (1), enhancing on this way the effect of particular 

intrinsic parameters in the areas under observation.  

In summary, using different image sequences and tuning the different values of the 

extrinsic parameters that contain, one can modulate image contrast on demand, 

depending on the intrinsic parameters of the matter under observation. In the 

following paragraphs, we will describe all these concepts in an attempt to better 

understand signal contrast in MRI and its interpretation in biological terms.  

As already mentioned, F1 in equation (1) represents the T1 weighting factor, which 

depends on the intrinsic parameter of the matter called longitudinal or spin-lattice 

relaxation time (T1), and basically two extrinsic parameters of the pulse sequence, 

the repetition time (TR) and the flip angle (θ). It is beyond our scope to provide a 

full description of these parameters (see [233] for full description). When F1 

approaches to 1 there is no T1 weighting on the images and when T1 approaches to 

0 the importance of this weighting factor is key on generation of signal and contrast.  

On the other hand, F2 represents the T2 weighting factor (sometimes expressed as 

T2*, depending on the acquisition scheme or pulse sequence used for image 

acquisition). This factor depends on the transverse or spin-spin relaxation time (T2 

or T2*, intrinsic parameters) and an extrinsic parameter of the pulse sequences 

called echo (or encoding) time (TE). Again, values of F2 close to 1 or to 0 define the 

importance of this weighting factor in the final signal observed in a region. 

Finally, F3 is a diffusion related weighting factor (water molecules naturally diffuse 

within and among cells in tissues, influencing signal on MRI) which depends on the 

apparent diffusion coefficient of water protons (D, intrinsic parameter) and the 

amplitude, pulse duration and sequential timing of activation of the scanner 

diffusion gradients (G, δ, Δ, extrinsic parameters) 
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According to equation (1), depending on the different intrinsic parameters of the 

different regions under observation, we can modify the image contrast by playing 

around with multiple extrinsic parameters (pulse sequence dependent) such as the 

repetition and echo times, the flip angle or the use of diffusion gradients, to yield: 

1) A Proton Density weighted image (F1 = F2 = F3 = 1, no influence of 

weighting parameters), achievable by using pulse sequences with short echo 

times and long repetition times, without using diffusion gradients. 

2) A T1-weighted image ( F1 < 1, F2 = F3 = 1), with high influence of the T1 

parameter, achievable by using pulse sequences with short repetition times, 

low flip angles and short echo times, without using diffusion gradients. 

3) A T2-weighted image ( F2 < 1, F1 = F3 = 1), with high influence of the T2 

parameter, achievable by using pulse sequences with long repetition times 

and long echo times, without using diffusion gradients. 

4) A diffusion-weighted image, or DWI, ( F3 < 1, F1 = F2 = 1), achievable when 

diffusion gradients are used during image acquisition, ideally with short 

echo times and long repetition times. 

5) A combination of several or all the previous one, when various conditions 

are simultaneously satisfied. 

Examples of all these different image weightings are presented in Fig. 13. As one can 

see in the figure, a good tissue contrast by tuning the imaging parameters one can 

enhance the contrast between tissues (such as white and grey matter) or regions of 

interest (such as the ischemic lesion) which are not straightforwardly differentiable 

for all image modalities. In other words, each feature to be studied requires the 

careful selection of the imaging sequence and the proper combination of the 

weighting factors (i.e. of the imaging parameters). 
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Figure 13. MR images of a rat brain with an ischemic lesion obtained with different image 
contrast. a) Proton density image (F1~F2~F3~1), b) T1-weighted image (F1=0.125 ; F2~F3~1), 
c) T2-weighted image (F2=0.135 ; F1~F3~1), and d) Diffusion-weighted image. 

 

The interpretation of biomedical MR images, therefore, requires a thorough 

understanding of the corresponding signal contrast in relation to underlying 

pathophysiology behind it. A clearly defined ischemic lesion (like the one observed 

in the rat brain in Fig. 13c), may not be appreciable with inappropriate weighting 

factors (i.e. acquisition parameters), that may mask the contrast between different 

regions (lesion basically masked in T1w image in Fig. 13b).  

On top of the acquisition schemes and parameters, other extrinsic factors like the 

main magnetic field, the hardware configuration (design and performance of RF 

coils, magnetic field gradients, shimming, local disturbances of the magnetic fields, 

etc.) have an influence on signal intensities and contrast on MR images, hampering 

the direct comparisons of images across different experimental setups, and keeping 

the evaluation of MR images qualitative and subjective, usually restricted to 

descriptions of relative contrast between different anatomical regions (the use of 

sentences like “presence of a hypo-, or a hyper-, intense signal in the region” are 

common in medical literature). In this cases, normalization of images may be 

necessary (against internal or external references) for image comparison, and the 

use of numerical variables such as signal to noise ratio (SNR) or contrast to noise 
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ratio (CNR) may be useful to establish such comparisons. 

Having disclosed the influence of the most common contrast mechanisms in 

biomedical applications of MRI (i.e. T1, T2, PD and DWI), it is important to mention 

that there are other physical mechanisms, with their corresponding intrinsic and 

extrinsic parameters, that can be used to further modify contrast on MR images, 

such as susceptibility weighted imaging (SWI), magnetization transfer (MT), 

chemical shift exchange (CEST), etc., but whose principles and definitions are 

beyond the scope of this work  (see reference [235], [237] or details about more 

specific contrast mechanisms such as magnetization transfer –MT-, T1ρ, chemical 

exchange saturation transfer, -CEST-, etc.). 

6.2.2. Magnetic resonance imaging techniques for quantification of myelin 

content 

As we have discussed earlier, along with its non-invasiveness, MRI technique has the 

great advantage of being multiparametric proportioning multiple types of contrast 

in relation with the microstructural environment of the regions (tissues) under 

observation. In this context, the definition of MR imaging biomarkers of myelin is a 

highly desirable goal pursued by researchers since those markers can provide 

important information to understand the dynamics of demyelination and 

remyelination in preclinical models, such markers can be translated to the clinical 

setting for the evaluation of myelin in humans, and can allow the evaluation of  

potential remyelination therapies in a longitudinal manner In this section we will 

review what it has been reported in literature in this field, with special focus on 

applications in the cuprizone model, increasingly used as a model for the evaluation 

of remyelination therapies, for reasons already mentioned, and because is the main 

model used in the experimental section of this work. 
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6.2.2.1. T1 and T2-weighted imaging 

Myelination processes (in the early stages of life, for example) and abnormalities in 

myelin content can be thoroughly monitored by T1- and T2-weighted imaging. In 

regard to development of the brain, myelination is extensive during the first year of 

life in humans, and T1-weighted imaging is sensitive to the accumulation of 

cholesterol [238] and galactocerebroside [239] constitutive of new myelinated 

white matter. In further stages, a progressive reduction of T2-weighted signal is 

observed as the water content of myelin decreases [240], [241]. This pattern is also 

followed in mice, where normalized T2-weighted signal has been described to drop 

8% throughout a period of 18 weeks, starting at 8 weeks [242]. 

In adulthood, for normal appearing white matter, the hydrophobic properties of 

myelin restrict molecular motion of protons, a scenario that is altered when WM is 

affected by pathological processes. It is important to considerer that T2 relaxation is 

affected by proton transfers, molecular exchange and water diffusion [240], and 

thus, white matter shows a lower T2 value than grey matter, generating contrast 

between both tissues in T2w imaging. Demyelination diminishes water diffusion 

restriction in WM and therefore is seen as an increase of signal for white matter on 

T2-weighted images. In the cuprizone model, for example, 5-6 weeks after exposure 

of animals to 0.2-0.3% (w/w) cuprizone containing diet, mice show an extensive 

demyelination in the corpus callosum, exhibited as the appearance of hyperintensity 

on T2-weighted images. In this mouse model, T2-weighted imaging has shown to be 

effective to evaluate in a semi-quantitative way the extent of demyelination between 

groups or throughout longitudinal studies. To address this aim, normalization of the 

signal between image sets is required (intra- and inter-individual differences exist). 

Thiessen and colleagues normalized MR signal in images with the CSF mean 
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intensity, observing a high correlation of normalized T2 signal with the number of 

myelinated axons measured by electron microscopy [198].  T2-weighted imaging 

also showed to be effective in assessing myelin content by estimating the grey 

matter/white matter ratio [196] and confirming a tight correlation with histology. 

Concerning grey matter, identification of demyelination calls for a very high 

resolution, since the number of fibres crossing the cortex is certainly reduced, 

compared to white matter tracts at the corpus callosum or cerebellum.  

On the other hand, the use of T1-weighted imaging in this model has not been 

extensive. However, discriminant function analysis revealed that a combination of 

normalized T1-weighted imaging and normalized T2-weighted imaging resulted in a 

correct classification of 93.8% of cuprizone exposed and control mice [243].  

In a clinical setting, both T1-weighted imaging and T2-weighted imaging play an 

important role as diagnostic tools. Recently generated inflammation is usually 

detected by gadolinium based T1-weighted imaging, and demyelinating plaques are 

detected by T2-weighted imaging. Nevertheless, in MS in the presence of oedema 

and inflammation, T1-weighted and T2-weighted imaging are not specific enough 

for myelin, as demonstrated by histopathological studies. Furthermore, this 

abnormal signal is not correlated with clinical disability, since there is no correlation 

between inflammation and disability. In other words, in absence of other effects, 

T1w and T2w imaging show a good degree of sensitivity and specificity for the 

detection of myelin, however other confounding concomitant effects that also alter 

T1w and T2w imaging signal (false positives) limit the applicability of this 

parameters by themselves. Certainly, this is the main reason why researches are still 

seeking for specific and sensitive sequences. [244], [245].  

One of these attempts that is popular nowadays is the calculation of parametric 
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images showing the T1w/T2w ratio, instead of the individual parameters. This ratio 

has shown to be sensitive to detect cortical demyelination. Demyelination of cortical 

areas leads to hypointensities in T1w images and hyperintensities in T2w images. 

Hence, the ratio of both images results in increased contrast. Post-mortem studies 

revealed a statistical difference between myelinated and demyelinated cortices  

[246]. Also, WM alterations can be detected by the T1w/T2w ratio, as shown in 

schizophrenic patients. [247].This approach might be of high utility in the clinics, 

where T1 and T2-weighted images are routinely acquired.  

6.2.2.2. Susceptibility weighted imaging 

Susceptibility weighted imaging (SWI) is a modality that enhances the T2* effect 

(enhancing field inhomogeneities) and makes use of phase information, of great use 

for detecting paramagnetic compounds. Basically, SWI is based on the different 

magnetic susceptibility of the components comprising tissues. Under a magnetic 

field, some components are prone to magnetize, altering the magnetic field of the 

surroundings and substantially contributing to the so-called T2* effect. Of note, 

contrarily to T1 and pure T2 effects, magnetic susceptibility are noted at larger areas 

than the physical limits of the area where they are produced (there is a blooming 

effect that extends contrast in space). This effect is highly enhanced at high magnetic 

fields. SWI is highly sensitive to the detection of iron, deoxyhemoglobin and myelin. 

Additionally, since myelin is an anisotropically organized structure, its macroscopic 

geometry [248] and microstructural orientation [249] might introduce variability in 

this parameter. 

Growing evidence has been added supporting the importance of myelin in the T2* 

effect in demyelinating models [250], [251]. Magnetic susceptibility of white matter 

is diamagnetic compared to grey matter. Growing evidence supports the fact that 
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myelin is behind this diamagnetic property [252]. For instance, in the shiverer 

mouse model of hypomyelination, magnetic susceptibility contrast is reduced by 

96% in white matter [250], [253]. A similar conclusion was obtained for the 

cuprizone mouse model [250]. However, in the EAE mouse model, lesion detected 

with SWI were mainly indicating the presence of deoxyhemoglobin and in a lesser 

extent, demyelination, inflammation of parenchymal iron [251].  

At the same time, iron accumulation and myelin damage are undergone by MS 

patients. Interestingly, T1-weighted and T2-weighted are not able to detect highly 

hypointense lesions which actually are revealed by SWI [254]. Observed 

hypointensities might arise from myelin loss, iron deposition or iron contained in 

oligodendrocytes [255], [256]. A study conducted by Deh and colleagues revealed 

that the magnetic susceptibility of myelin is increased when myelin breakdown 

takes place [257]. Once again, the presence of false positives is a limitation for the 

universal use of SWI as a specific biomarker of myelin content.  

6.2.2.3. Magnetization transfer imaging 

Magnetization transfer phenomenon is produced by the saturation of spins in 

macromolecules (non-aqueous tissue), which transfer their energy to the visible free 

water molecules, leading to a reduction of signal intensity from the former ones 

[258]. This phenomenon is strong in areas enriched on white matter. The 

measurement of the relative signal attenuation produced by the excitation pulse has 

been put forward as a semiquantitative measure of myelin density. The percentual 

change in the signal caused by the transfer of magnetization is reflected in a 

numerical parameter called magnetization transfer ratio (MTR). 

In the toxic cuprizone and L-a-lysophosphatidylcholine stearoyl mouse models, MTR 
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has exhibited a decrease as a consequence of demyelination and, an increase after 

remyelination, in white matter rich regions, in agreement with 

immunohistochemistry staining validations [259], [260]. A decrease in MTR is also 

appreciated in the EAE model [261], [262] and in human studies [263] after white 

matter breakdown. 

Nevertheless, the specificity of magnetization transfer imaging is currently under 

discussion, as it has been proved that is influenced by inflammation in the EAE 

model [264]. Additionally, in the cuprizone model MTR also showed a negative 

correlation with the GFAP marker of astrocytes, revealing an effect of astrogliosis in 

changes observed for this parameter [259].  

The sensitivity of MTR may also be lower compared to conventional imaging [187]. 

Although abnormal values were found in the deep grey matter in the cuprizone 

model, no changes have been reported in the cortex or in the cerebellum, using 

magnetization transfer imaging [199].  

6.2.2.4. Diffusion-weighted imaging 

Diffusion-weighted imaging is based on the pattern of water molecules motion in 

tissues. Image contrast is achieved by the application of bipolar magnetic field 

gradient pulses.  While in the normal appearing white matter, diffusion takes place 

mainly following the direction of white matter tracts (anisotropic diffusion), in the 

grey matter, the absence of barriers allows water motion in any direction of space 

(isotropic diffusion). Both conditions (anisotropic vs. isotropic diffusion) can be 

distinguishable by MRI, by applying diffusional gradients in multiple directions of 

the space (at least 6 directions). When DWI signal is similar irrespective of the 

direction of the gradients applied, water molecules are located in an isotropic 
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environment (grey matter) while predilected diffusion in particular directions of 

space indicates an anisotropic environment (white matter). The acquisition of DW 

images in multiple directions of space is generally referred as Diffusion Tensor 

Imaging, or DTI, and by image processing of these image data sets, directional 

vectors are mathematically synthesized in an ellipsoid or diffusion tensor, 

representing water motion in it. Combination of mathematical representation of 

these diffusion tensors (the so-called eigenvectors and eigenvalues) give rise to 

several imaging parameters, including:  

 

- Fractional anisotropy (FA): a scalar value representing the degree to which 

diffusion is restricted to specific axes. A value of 0 represents pure isotropic 

diffusion and a value of 1 pure anisotropic diffusion 

- Mean diffusivity (MD): the sum of diffusivity along the three axes. 

- Axial diffusivity (AD): the diffusion coefficient along the principal axis of 

diffusion. 

- Radial diffusivity (RD): the mean diffusivity orthogonal to the principal axis. 

 

These four parameters give important information about the structure of tissues in 

relation to the diffusional behaviour of water on them. Thus, DTI is sensitive to 

many factors such as myelin thickness, axonal density, oedema, inflammation or cell 

swelling. In the human brain axial diffusivity describes the movement parallel to 

white matter tracts and radial diffusivity perpendicular to them. Pathologies altering 

the microstructure of both WM and GM can affect the diffusion of water molecules, 

and therefore the values of the MRI parameters obtained in DTI.  
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Table 1. Schematic description of the main DTI parameters [265]

 

 

With the advent of demyelination, myelin barrier is disrupted and water diffusion is 

facilitated perpendicular to the axons. All in all, this causes an increase in radial 

diffusivity and a decrease of fractional anisotropy.  Of note, abnormal FA values can 

be also shown due to several microstructural conditions such as inflammation, 

oedema or demyelination [266]. This has been proved in several studies conducted 

in the cuprizone mouse model, where radial diffusivity has shown to be an accurate 

marker of demyelination as confirmed by electron microscopy or histological 

studies [267]–[269]. These results have also been confirmed in the shiverer mice of 

hypomyelination [270]. 

In case axonal damage does not occur, axial diffusivity remains stable. A decrease of 

axial diffusivity is seen when axons suffer from atrophy or swelling [268], [271], as a 

consequence of hampered water diffusivity all along axons due to disordering of 

microtubule arrangement, filament aggregation or accumulation of myelin debris 

[272]. This was also confirmed in the EAE model, where a reduction of the axial 

diffusivity parameter was observed in the white matter of the EAE mice, tightly 

correlating with the staining of phosphorylated neurofilaments [273]. Moreover, in 

the optic nerve of EAE mice, an increase of radial diffusivity and a decrease of AD 

has been described [274].  DTI studies conducted in humans have confirmed the 
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increase of radial diffusivity as a consequence of demyelination, but show 

controversial data with respect to axial diffusivity [275], [276]. 

In agreement with the findings in multiple sclerosis mouse models, in a mouse 

model of retinal ischemia, a decrease in AD was observed after three days as a 

consequence of axonal damage with a posterior myelin degradation because of the 

biochemical cascade triggered by the ischemic insult [277]. Similarly, in an 

Alzheimer’s disease model of β-amyloid deposition and in a model of Tau protein 

expression, decreased RD values have been found in the white matter [278], [279]. 

6.2.2.5. Water fraction imaging 

Generally, mobile water protons in the human brain can be subdivided into three 

main groups according to their T2 relaxivities: 1) protons with very long T2 times 

(>2000 milliseconds, but this value depends on the applied magnetic field), 

corresponding to cerebrospinal fluid; 2) protons with intermediate T2 times (~80 

milliseconds) corresponding to intracellular and extracellular water; and 3) protons 

with short T2 time (~20 milliseconds), corresponding to water within myelin spiral.   

Focusing on white matter, two main pools of water can be identified: the first one 

can be attributed to the aforementioned water trapped between the myelin bilayers, 

and the second one to the intra-axonal and extra-axonal water [280], [281]. Apart 

from these, the signal arising from protons in myelin lipids and proteins exhibit very 

short T2 time, around 10-1000 microseconds. Hence the contribution of this last 

group would be negligible for the global signal. From the measurement of myelin 

contribution to the T2 relaxation time, the myelin water fraction (MWF) is estimated 

as the ratio between the area of the curve corresponding to myelin water and the 

area of the curve of the total water [282]. 
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Myelin pathologies might lead to an increase of the T2 time of water trapped in the 

myelin membrane, as a consequence of water liberation. This has been proved in MS 

patients [280], [283]. An study in guinea pigs at 4T demonstrated the specificity of 

myelin water imaging [264]. Nevertheless, iron has shown to contribute to signal 

detected in myelin water imaging. In histopathological studies removal of iron from 

tissue resulted in an MRI signal drop of 26% in white matter [284]. Further studies 

are needed to prove the specificity of myelin water fraction imaging. 

It should be kept in mind that at high-fields, like the ones used in preclinical imaging, 

the T2 relaxation time is much lower than at clinical fields. At 11.7T  relaxation time 

of white matter regions vary between 24 and 31 ms [187], on the contrary in a 

human 3T scanner white matter relaxation time is about 47 ms, approximately 

[285]. Therefore, the sharp T2 time decay at high fields hampers the acquisition of 

data from water trapped in the myelin membrane. Studies performed at 7T in the 

cuprizone mouse model didn’t found myelin associated components in the T2 decay 

[198].  On the contrary, at 1.5T, demyelination and remyelination processes were 

specifically monitored with this technique in a rat model [286]. This example shows 

the disadvantages of using high fields, where the reduced T2 times do not enable the 

identification of multiexponential curves.   

6.2.2.6. Ultra-short echo time  

Myelin water content is about 40% [287]. Unlike the aforementioned approaches, 

ultra-short echo time (UTE) targets the non-aqueous components of myelin, from 

which conventional MRI does not get any direct signal. That is, it targets at protons 

in lipids and proteins. The decay time of these components is around 10-1000  

microseconds in human scanners and therefore virtually undetectable with 

conventional imaging modalities. Moreover, selective visualization of myelin might 
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be hindered by the signal coming from water pools.  

The use of an adiabatic inversion recovery pulses and UTE pulse sequence has 

shown to be effective in detecting demyelination [288], [289] in humans (minimum 

TE of 8 µs) and rat spinal cord [290]. So far, few studies have been conducted with 

UTE in humans and further validation of this technique is required. Furthermore, 

this technique is highly demanding for the MRI hardware and is not universally 

available as the previously discussed techniques. 

In summary, multiple MR imaging modalities have been proposed to characterize 

myelin content in the brain and to study demyelination and remyelination 

processes. Despite showing enough sensitivity of detection the specificity of the 

defined parameters, MRI is limited to specific experimental conditions or 

particularities of the model applied or disease studied. False positives are not 

unusual at all, and thus, no convention or universal agreement has been reached yet 

for any of the aforementioned imaging modalities and imaging parameters, or even 

for other more exotic like T1ρ and other not reviewed here, as a truly specific 

indicator of myelin content, for which further research in this field is totally justified. 

6.2.3. Other Imaging modalities 

As an alternative to MRI, other non-invasive or minimally invasive imaging 

modalities have been described for the study of myelin. Positron emission 

tomography (PET) is a useful tool for imaging the CNS at a molecular level and has 

also been used for the evaluation of myelin content. Several tracers has been 

postulated as potential myelin markers, such as [11C]BMB [291], [11C]PIB [292],  

[11C]CIC [293] and [11C] MeDAS [294]. Among them, [11C]PIB has shown to be a 

promising tracer, since it is able to assess the remyelinating capacity of different 
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individuals [295]. Its function might lie both in its capacity to get trapped in the 

structure of myelin and in its solubility in the myelin bilayer. Nevertheless, the 

lipophilic nature of the tracers can result in nonspecific binding [296]. Furthermore, 

current PET tracers are not able to detect small demyelinating lesions (0.5 mm or 

less), owing to the intense signal arising from the surrounding myelin. [297]. In 

addition, Zhang and colleagues have recently concluded that the [11C]PIB tracer was 

not sensitive enough for the evaluation of myelin in the LPC rat model, due to the 

side effect caused by the procedure  [298] 

Even though currently there is not any robust tracer for myelin, in future PET might 

become a technique of interest for the evaluation of remyelinating therapies. 

However, contrary to magnetic resonance scanners, PET imaging is not widely 

available in clinical sites and it requires the injection of a radioactive tracer. 

On the other hand, visual evoked potential measurement is a non-invasive tool for 

the evaluation of the visual system. This can be applied in optical neuritis which 

usually manifested in the first stage of MS. Roughly speaking, the amplitude of VEPs 

is thought to be correlated with the number of functional nerve fibres. The 

prolongation of VEP latency after the lesion has been put forward to describe 

demyelination, while a reduction of the VEP latency has been attributed to 

remyelination [26]. This technique has been used for the assessment of therapies in 

clinical trials [51], but the use of this indirect measurement is just limited to the 

visual pathway. 

7. Resting-state functional MRI  

To finish this introductory section, the principles and use of functional MRI will be 

reviewed. Indeed magnetic resonance does not only provide anatomical imaging but 
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offers the possibility to assess the connectivity patterns in a functioning brain, 

depicting the organization of neuronal networks and how these change in terms of 

changes on organization and strength of connectivity. Certainly, brain function can 

be altered as a consequence of natural processes such as maturation, aging or 

learning, or in response to pathological and healing processes.  

In particular, resting-state functional MRI (rs-fMRI) has emerged as a very useful 

tool for the evaluation of brain function and connectivity, revealing substantial 

abnormalities in neurodegenerative diseases. Importantly, during the last decade an 

extensive characterization of rodent brain connectivity has been performed. 

Nevertheless, still further gaps in knowledge have to be addressed regarding brain 

connectivity. In this work implications of both remyelination and demyelination in 

brain function and connectivity will be addressed, taking into account that they take 

place in the context of aging, which also has an impact on functional changes. But 

first, the principles of rs-fMRI, data acquisition and analysis approaches and the 

importance of the anaesthetic protocols for preclinical imaging will be reviewed.  

7.1. Principles of resting-state functional MRI 

The brain enables us to perform countless functions. Even though the brain is 

composed of several specialized brain regions, a constant interaction between them 

endows us with the capacity to perform a multitude of tasks. The complexity of the 

brain is still beyond our comprehension and still, a heap of questions are 

unresolved. Nevertheless, brain imaging has undergone great development during 

the last decades, providing deep knowledge.  Since its discovery in the early nineties, 

resting-state functional MRI has become a crucial tool for the understanding of brain 

functions.  
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Neurons are energetically highly demanding cells, which lead to a high oxygen and 

glucose requirement. When performing a given task, the supply of oxygen and the 

cerebral blood flow are increased regionally, this is called hemodynamic response 

[299]. As a consequence, with the advent of function, deoxyhemoglobin will be 

partially substituted by oxyhemoglobin. 

The different magnetic susceptibility of oxyhemoglobin and deoxyhemoglobin alters 

the local magnetic field and therefore affects the magnetic resonance signal. While 

oxyhemoglobin has diamagnetic properties, deoxyhemoglobin is paramagnetic. 

Hence, deoxyhemoglobin can lead to a reduced T2* relaxation time, comparing to 

oxyhemoglobin, producing a blood oxygen level-dependent (BOLD) signal changes 

in MRI [300]. Identification of active regions can be carried out by detection low 

frequency (0.01-0.1 Hz) fluctuations in the signal.  

Until 1995, functional MRI studies were task or stimuli based. These experiments 

seek for regional activity under a given task, compared to a non-stimulated control 

status. In 1995, Biswal and colleagues were performing one of those experiments, 

recording BOLD response while performing a finger-tapping activity. In the 

meantime of tapping activity, they found a tight correlation between the 

homologous regions of the motor cortex in both hemispheres of the brain 

corresponding to neural activity [301]. They postulated that a deep analysis of MRI 

signals from the brain in the absence of any stimulus (resting.state) could actually 

provide the information required to build up connectivity maps of the different 

neuronal networks. From that time on, rsfMRI has become a valuable tool for the 

understanding of the brain and neurologic pathologies, focusing on low frequency 

brain fluctuation of the BOLD signal. Interestingly, Ma and colleagues confirmed the 

tight correlation between rsfMRI and neural activity by recording neuronal activity 

with optical imaging of calcium-sensitive fluorophore GCaMP together with rsfMRI  
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[302]. Compared to task-evoked fMRI, rsfMRI can have a detailed view of brain 

networks that are not accessible by sensory stimulation and depict multiple 

networks simultaneously. 

Certainly, rs-fMRI has allowed the identification of several neuronal networks. The 

default mode network (DMN), is a highly consistent network between different 

individuals and across time [303]. Additionally, it has been demonstrated its 

conservation in different species [304], [305]. Further studies in optical imaging 

[306] and PET have confirmed the existence of this network, involving many regions 

of the brain [307]. Moreover, the importance of this network also relies on its 

implication in several neurodegenerative pathologies [308]–[310].  

 

 

 

 

 

 

 
 
Figure 14. Group independent component analysis (ICA) identification of functional hubs in the 
mouse brain (Bukhari, Schroeter, Cole, & Rudin, 2017). 
 

During the last years, substantial progress has been made in rodent resting-state 

fMRI. This has been possible due to the increasing interest in identifying imaging 

biomarkers of neurodegenerative diseases. In this setting, rodent models provide 

the possibility to perform longitudinal studies and manipulate experimental 
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variables. Furthermore, the development of transgenic rodent models permits a 

detailed study of a particular component. For instance, in Alzheimer’s disease, a 

mouse model β-amyloid deposition [311], a mouse model of tau protein 

overexpression [278], [312] and a mouse model overexpressing both β-amyloid and 

Tau-protein have been developed [108]. In this way, the implications of each given 

marker of the pathology can be revealed. Additionally, better development of 

experimental protocols for rodent resting state [313], [314] has further facilitated a 

large characterization of resting-state networks in rodents [315], [316]. The 

importance of studies conducted in rodents it is increasing by the fact that resting-

state cortical and subcortical networks have been found analogous to those in 

humans in both rats [317], [318] and mice [315], [319]. 

7.2. Data acquisition and analysis 

The analysis of resting-state data is of utmost importance. Signal fluctuation in fMRI 

is highly contaminated by confounding effects that should be filtered out. In fact, 

data from the human connectome project reveals that signal related to neural 

activity was observed to correspond to the 4% of the variance of the total signal 

[320]. The rest of the signal corresponds to physiological noise (heart-rate, 

respiration), motion artefacts and artefacts arising from the scanner electronics and 

vibrations. However, many of these effects, such as respiration and cardiac pulse, 

take place at higher frequencies than neuronal activity related to BOLD signal 

fluctuations and can be filtered by signal processing techniques [315]. 

Thus, it is crucial to perform noise removal that could hide fluctuations arising from 

BOLD. A preprocessing pipeline usually includes motion correction, spatial 

smoothing, removal of the first 10-20 time points, normalization, high-pass filtering 

and registration to a common space [321]. Murphy et colleagues provided a detailed 
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review of data cleaning approaches [322].  

In practice, two main approaches are followed for rs-fMRI data acquisition and 

processing. The first approach consists in the monitorization and recording of 

physiological parameters during data acquisition. After the recording, linear 

regression can be performed to remove the confounding effect. Kalthoff and 

colleagues  [314] observed that linear regression of motion reduced the variance of 

data by 15% to 35%. Additionally, respiration regression reduced the variance 

approximately 5%, while the main magnetic field drift and cardiac pulse regression 

lead to a reduction of 1% in rats. Even though this might be an effective strategy, 

physiological monitoring data is not always straightforward or available (MR 

compatible devices are required for monitoring). Additionally, many artefacts 

arising from the MRI hardware are not removed by this approach alone. These 

artefacts are show complex patterns and could be challenging to remove [323]. 

The second approach is a data-driven procedure consisting of accomplishing a 

decomposition of signal through independent component analysis (ICA) [324] with 

a posterior removal of noise-related components. ICA decomposes fMRI data into 

several components, each of them represented by a 3D spatial map and a time 

course. Some of these components will correspond to neuronal activity related 

signal components and the rest of them to artefacts or noise, which can be regressed 

out to reduce the negative effect on posterior analysis. The correct classification of 

these components is crucial. To address this aim, some automatic approaches have 

been developed. This will call for visual inspection of components for posterior 

training.  The spatial and temporal behaviour of signal and noise components are 

extensively described in the literature [323], [325], [326]. The correct interpretation 

of the ICA spatial map, the power spectral density and the associated time series are 

essential for a proper evaluation. The following ones are the main features of signal 
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components regarding the spatial map  [327]: 

 

- Low number of large clusters. 

- Activity should be found in grey matter and not in white matter. 

- Activity should not be overlapped with the boundaries of the brain. 

- Activity should not be found close to regions prone to have susceptibility artefacts. 

- Activity should not contain artefacts related to the MRI sequence, such as banding 

patterns or streaks. 

 

Concerning the interpretation of the time series, signal related components exhibit 

an oscillatory time course. For instance, components arising from motion can show a 

pronounced peak in the time series.  

Manual classification might be time consuming and with big sample size, it could 

become tedious. In order to facilitate data analysis, automatic artefact component 

classification and data cleaning can be conducted with FIX [328] which is based on 

the hierarchical fusion of classifiers (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX). The 

use of FIX requires previous training with high-quality data. This approach has 

shown to be effective both in humans [329] and rodents [330]. 

7.3. Analytic approach 

After data cleaning, group analysis is performed. There are two main approaches for 

the interpretation of resting-state data: temporal association and temporal 

integration [331], [332]. The first one is focused on regional activity and is used for 

mapping of active areas. The second one looks for connectivity between different 

regions by looking at the temporal correlation of the time series over time. ICA 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX
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(temporal association) and Seed-based correlation analysis (temporal integration) 

are the two main approaches  

7.3.1. Seed Based Functional Connectivity Analysis 

Seed based functional connectivity analysis (SCA) is a widely used approach for the 

study of brain connectivity. The aim of SCA is to assess the temporal correlation 

between the mean time series of different regions. The selection of the ROIs can be 

done in a hypothesis-driven way or after a previous analysis, such as ICA. Hence, 

regions with a high temporal correlation are suggested to be connected and 

participate in the performance of the same task. After the measurement of the 

partial or full correlation between different regions of interest, a matrix plotting the 

strength of each interaction is often built with a colour-coded fashion. 

 

 

 

 
 
 
 
 
 
 
Figure 15. Cross-correlation matrices of healthy mice and ApoE4 knock-out mice. Adapted 
from [333]. 

 

The use of this analysis has been widely used and has been sensitive to the 

identification of altered connectivity in pathological conditions [186], [334], [335]. 

Indeed, the main advantage of this analysis is its interpretability and simplicity. 
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However, the reached conclusions might depend on the ROIs selection. 

7.3.2. Independent component analysis 

Independent component analysis (ICA) can be carried out for the cleaning of data 

and also for the identification of resting-state networks group-wise. This is not 

hypothesis-driven and enables the identification of independent spatiotemporal 

components that correspond to functional networks.  

 

 

 

 

 

 

 
 
 
Figure 16. Results of Dual Regression analysis for eight components derived from ICA for 
isoflurane-anaesthetized mice compared to medetomidine-anaesthetized mice (green higher, 
blue lower). [336]. 

 

This is achieved by decomposition of 4D fMRI data into independent components. It 

is performed in two steps: first, 4D fMRI data is ordered in a 2D space by arranging 

all voxels for each given time point into a single row. Second, this matrix is 

decomposed into two additional matrices, one containing the time course of each 

component in each column and the second one containing the spatial map of each 

component in each row. In this way, networks consistent within a given group can 
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be detected, while signal arising from confounding sources in each individual is 

removed by averaging. Contrary to SCA, this approach enables the identification of 

all active regions in the brain. 

7.4. Anaesthetic protocol  

A final aspect that should be tackled is the key influence on the use of anaesthetics, 

in the case of animal experiments. Unless extensive and complicated training is 

performed, research animal, conversely to humans, does not show a cooperative 

attitude when performing fMRI experiments. Thus, confounding effects such as 

anxiety and fear, as well as strong movement artefacts would be present in non-

sedated or anaesthetized animals. This calls for the use of anaesthesia protocols that 

for sure have some influence on neural activity and thus, anaesthesia protocols 

become a crucial part of fMRI studies in rodents, with critical influence in the results 

obtained [337].  

Ideally, the anaesthetic protocol should avoid the motion of the animal while 

achieving a brain state resembling the wake-up activity. The use of anaesthesia can 

have several implications in brain function and may interfere with the resting-state 

networks. In a study performed by Grandjean and colleagues [338], it was described 

that in mice under isoflurane cortical activity is observed, while subcortical 

networks are attenuated. With medetomidine anaesthesia, on the other hand, 

subcortical activity was displayed. The combination of both anaesthetics at low dose 

resulted in a superposition of the effect of both anaesthetics, exhibiting extended 

activity in both cortical and subcortical regions. A lot of work has been published in 

relation to the influence of anaesthesia, and multiple protocols have been described 

in the literature. However, the experimental protocol based on the use of these two 

anaesthetics, as described elsewhere (Egimendia et al, 2019) is widely accepted by 
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the scientific community and it will be used in the experimental sections of this 

works. 

So far the theoretical background and a comprehensive review of the state of the art 

has been provided in relation to myelin, myelin-related pathologies, therapies and 

the existing experimental techniques for the study, both at the anatomical and 

functional level. Thus, the information provided here is sufficient to facilitate the full 

comprehension of the experimental sections of this work that will follow this 

introductory section. 
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Demographic changes in our society, reflected in progressive aging of the population 

in industrialized countries, has a direct impact on the incidence of neurological 

disorders, with the corresponding burden for society at welfare and economic levels. 

Loss of autonomy and dependency of individuals associated with aging and 

neurological disorders is one of the most worrying threats for healthcare systems. 

The understanding of the mechanisms underlying functional deficits and/or 

cognitive decline associated and the development of strategies to ameliorate their 

impact or simply to promote healthy and active aging, are among the most 

ambitious framework policies of the authorities and supra-governmental 

organizations such as the EU or the WHO. 

It is well established that myelin is an essential element for neuronal transmission 

and that alterations in myelin content and structure are implicated in the cognitive 

decline suffered during the progression of multiple sclerosis and other 

demyelinating pathologies. In this context, remyelination has emerged as a 

promising neuroprotective approach, putting forward several potential therapeutic 

approaches to facilitate this process. In consequence, the development of models 

and tools that allow us to fully characterize the process of demyelination and 

remyelination, from both an anatomical and a functional point of view, is of 

paramount importance for the development of novel therapeutic approaches to 

treat myelin-related diseases. Despite the efforts done in this direction, no single 

experimental model or experimental techniques have managed to become gold-

standards for such purpose, and studies aiming at the establishment of robust 

experimental models and protocols for the study of myelin are justified.  

In this work, started three years ago we described our efforts to establish robust 

experimental models where demyelination and remyelination processes take place, 

both at in vitro and in vivo settings, and to develop non-invasive methodologies that 
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will allow us to perform non-invasive and longitudinal studies of the progression of 

these processes and evaluate the effectiveness of therapeutic approaches for 

remyelination. In particular, we have focused our attention on the use of magnetic 

resonance imaging, an experimental technique that presents high versatility and no 

invasiveness. Additionally, it provides both anatomical and functional information 

and is readily translatable to the clinical setting, since is one of the most powerful 

and used medical imaging techniques in this context.  

Our final aim was to 1) contribute to de field by providing robust experimental 

models and techniques to study myelin in a non-invasive manner, 2) to use them to 

study the processes of demyelination and remyelination both at anatomical and 

functional level, highlighting the strengths and pitfalls of the proposed 

methodologies and 3) to test them in terms of sensitivity to describe the advantages 

of a remyelinating therapy, in order to highlight their potential as fundamental tools 

to enable the development of novel and more effective therapies against 

demyelination.  
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The present work has been developed based on the following working hypotheses: 

1) In vitro models of demyelination and myelination are fundamental tools for the 

study of these processes. However, quantification of myelin in such models remains 

a challenge for the current state of the art. Thus,   

- We hypothesize that magnetic resonance imaging could become a valuable 

tool to determine the myelin content in in vitro models of demyelination. 

2) Non-invasive assessment of myelin content and status in in vivo models of 

demyelination and remyelination is a key aspect for the study of these processes. 

Despite several magnetic resonance imaging parameters have been postulated as 

potential imaging biomarkers of myelin, certain controversy remains in the current 

state of the art about their sensitivity and specificity, and none of them has achieved 

the status of gold-standard. 

-  We hypothesize that it is possible to define an MRI parameter, or series of 

parameters, which used in conjunction with histological validations, can 

describe with sufficient sensitivity and specificity, the processes of 

demyelination and remyelination in a non-invasive and longitudinal manner. 

-  We further hypothesize that the experimental conditions such as the timing 

of the experiments, the magnetic field of the MRI system, the spatial 

resolution and other experimental conditions can influence the potential 

universality of use of those parameters.   

-  Finally, we hypothesize that the animal model used for the study also plays a 

key role in the potential universality of MRI-based parameters as imaging 
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biomarkers of myelin since most of them are altered in different manner and 

by different pathophysiological processes. Thus, specific imaging biomarkers 

established using the cuprizone mouse model might lose specificity to detect 

myelin-related phenomena in models of other diseases, such as Alzheimer’s 

disease.  

3) Alterations of brain connectivity and functional networks concomitant with 

pathological and or therapeutic processes, in the context of demyelinating 

diseases, remain not completely elucidated in the current state of the art. 

-  We hypothesize that resting-state functional MRI methodology is sensitive 

enough to detect functional decline and reinstitution associated to the 

demyelination and remyelination processes present at the murine cuprizone 

model of multiple sclerosis, and that the performance of a longitudinal 

functional study in the cuprizone murine model may provide invaluable 

information to understand the underlying mechanisms of both processes. 

- We further hypothesize that resting-state fMRI is sensitive enough to detect 

differences between spontaneous (naturally occurring) vs. therapeutically 

induced functional recovery from a demyelinating insult, reinforcing the 

importance of this technique for the development of therapies for the 

treatment of multiple sclerosis and other demyelinating diseases. 
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Based on the aforementioned hypotheses, these have been the objectives of the 

current work: 

- To develop an experimental setup that allows the use of magnetic resonance 

imaging for the non-invasive and longitudinal assessment of myelin content 

in an ex vivo model (organotypic cultures) for demyelination-remyelination. 

- To find an MRI parameter, or series or parameters, that can be used as a 

sensitive and specific imaging marker of myelin content in the in vivo 

cuprizone murine model of demyelination-remyelination, with the 

corresponding histological validation. 

- To use the developed imaging protocols to provide a high temporal and high 

spatial resolution longitudinal description of myelin content in the brain of 

mice, both during the demyelinating insult induced by cuprizone and the 

spontaneous remyelination that follows, including the acute and chronic 

stages of the pathology. 

- To test the specificity and universality of the developed imaging protocols in 

the mouse model of β-amyloid deposition and in a mouse model of 

tauopathy, representative of events related to Alzheimer’s disease. 

- Use of the aforementioned MR imaging protocols to establish if the 

development of β-amyloid deposits or neurofibrillary tangles has associated 

alterations on myelin, in two animal models of Alzheimer’s disease. 

- To develop experimental protocols for functional MR imaging that allow the 

description of functional connections in the brain, as well as the 

quantification of their strength, and use these techniques to analyse the 

impact of demyelination and remyelination at functional brain connectivity 
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level in the brain using the cuprizone murine model. 

- To use the aforementioned functional methods to compare spontaneous 

versus therapeutically enhanced remyelination processes from a functional 

and anatomical point of view, treating cuprizone intoxicated animals with 

clemastine. 

- To investigate the functional changes associated with the processes of 

maturation and aging in healthy subjects as potential confounding effects on 

the long-term functional studies of demyelination and remyelination 

processes. 
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Magnetic resonance imaging as a tool for the study of 

cerebellar organotypic cultures 
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1. Foreword 

Organotypic cultures represent an advanced in vitro model of added value for the 

study of pathologies of the central nervous system, such as demyelinating diseases. 

Several reports in the literature have shown the goodness of these cultures for the 

study of demyelination and remyelination processes. We believe that it is possible to 

develop a protocol for the quantification of myelin in organotypic cultures by non-

invasive means, in particular by magnetic resonance imaging, enabling the study of 

such cultures in a longitudinal way, with the advantages that such feature 

represents. Thus, the first experimental chapter of this thesis is devoted to the 

efforts carried out to develop experimental protocols of preparation and managing 

of organotypic cultures from mouse brain and to develop MRI based imaging 

protocols to quantify myelin content on those cultures. 

Being aware of the difficulties that involve exploring unknown terrain and of the 

limitations that magnetic resonance imaging could have for culture imaging, we 

have carried out a reductionist approach to tackle this issue, as we report in this 

chapter. 
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2. Introduction 

In vitro models can provide very important information on particular biological 

aspects or events, helping to a better understanding of mechanisms of disease or 

healing in shorter time than in vivo models, by isolating the target subject of study 

from confounding effects present in the complexity of an in vivo setting. In general, 

in vitro models may represent different levels of simplification. For the particular 

case of the central nervous system, the neurovascular unit is a quite complex system 

with strong interaction among its components and thus, unlike in vitro cell cultures, 

ex vivo organotypic brain cultures may provide a more realistic setting in which glia 

closely interact with neuronal axons in three-dimensional space [160]. Organotypic 

brain cultures have become a simplified way to study demyelination and 

remyelination processes and are considered a suitable tool for the evaluation of 

therapies, based on drugs or by genetically manipulated cells [158] (Fig. 1.1).  One of 

the biggest advantages of using this model is the possibility to run multiple studies 

in parallel, with virtually the same conditions for all in vitro samples. In this way, 

several treatments can be evaluated in a short period of time compared to in vivo 

studies, enabling rapid screening of high-throughput therapies. 

Different brain regions have been typically cultured, however, since the cerebellum 

contains a homogeneous axonal architecture, it has been put forward as an 

appropriate model for the study of myelin [156]. Briefly, cerebellum extracted from 

mice at post-natal day 7-12 can be sliced in sections of 300-350 µm of thickness, and 

cultured on semipermeable membranes immersed in culture media. Tissue sections 

have to be cultured for a period of at least 7 days in order to enable the cerebellum 

slice to adapt and recover from the impact of processing. At this point, lysolecithin 

can be added to the medium to achieve extensive demyelination [157]. Following 
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the demyelinating insult, remyelination is conducted spontaneously within the 

following days [158], which can be further stimulated through therapies.  

  

 

 

 

 
Figure 1.1. Preparation of cerebellar organotypic brain cultures for the study of myelin 
pathology. A mouse brain is extracted from post-natal mice (7-12 days) and sliced in 300-350 
µm. Slices are cultured for one week and lysolecithin is applied to induce demyelination. Finally, 
remyelination takes place spontaneously, which can be boosted by therapies.  

 

Myelin content on those cultures has been traditionally characterized by invasive 

methods like RT-PCR, western blot or immunofluorescence [162]. However, each of 

those has disadvantages: 1) RT-PCR quantifies myelin related genes but does not 

provide a direct measure of myelin content. 2) Western blot can provide a 

semiquantitative measure of myelin content, but it is not sensitive enough to detect 

the myelin content of a single slice. 3) Immunofluorescence is based on the staining 

of axons and myelin separately. As such, co-localization of channels would 

correspond to myelinated axons. Although information of great interest can be 

obtained, it is challenging to have a quantitative and reliable measure of myelin 

content. 

Additionally, long-term live imaging can be also performed with organotypic 

cultures transgenes expressed in mice [163]. Nevertheless, so far, any technique has 

shown the simplicity and accuracy to assess myelin content in a robust way. 

In this context, we postulate that magnetic resonance imaging could provide a 



 
 
 
 
 
 
 

 
88 | Chapter 1 

quantitative or semi-quantitative estimation of myelin content in cultures, with the 

huge advantage of non-invasiveness, and therefore enabling longitudinal studies in 

the same cultures. MRI has been widely used for quantification of myelin humans 

and preclinical models and many parameters have been tightly correlated to myelin 

content, such us, T2-weighted signal or radial diffusivity (for more information refer 

to Chapter 2) [215]. However, imaging of organotypic cultures represents a great 

challenge due to several factors. During thriving, brain slices lose stiffness, 

spreading on the surface of the supporting membrane where they lean on, becoming 

increasingly thinner, reaching a thickness below 100 µm [339]. In this work, we 

describe our attempts to achieve an experimental protocol for the MRI based non-

invasive quantification of myelin content in organotypic cultures from mouse 

cerebellum, including molecular imaging approaches that require the design of 

myelin-specific imaging probes. This challenge has been arduous, considering that 

organotypic culture imaging is far from being a simple and reliable method, due to 

the various obstacles found on the way. In fact, to our knowledge, there are less than 

10 publications on this issue, and most of them actually use tissue slices, with their 

characteristic thickness and structures, but not purely thin organotypic cultures.  

In a reductionist approach, we have conducted this research in four steps of 

increasing difficulty. First, we have studied the possibility of using MRI to image 

slices of tissue directly excised from the cerebellum of mice and immediately fixed in 

paraformaldehyde (herein referred as brain tissue sections). The purpose of this 

study was to set up imaging protocols, the logistics of placing tissues in the magnet 

and adapt the MR hardware for proper imaging of these experimental setups. 

Additionally, we also tested the sensitivity of detection, the limits of spatial 

resolution and the Signal-to-Noise ratio and Contrast-to-Noise ratio achievable, 

using consistent and stiff pieces of biological material of well-defined tissue limits 



 
 
 
 
 
 
 
 

Chapter 1 | 89 

 

and internal structures. Secondly, we continued our research with proper 

organotypic tissue cultures of large thickness sections (herein referred as thick 

organotypic cultures), cultured for one week, that somehow resemble the brain 

tissue sections but with more diffused boundaries and internal structures. Next step 

on our research consisted on the use of thinner organotypic tissue cultures (herein 

referred as thin organotypic cultures) where is practically impossible to distinguish 

any internal structure by visual inspection and basically resemble thin amorphous 

masses of tissue. Finally, we have constructed imaging probes that specifically target 

myelin for a molecular recognition approach, in an attempt to increase the 

sensitivity of detection of myelin in the tissue cultures.  Somehow with this 

approach we have used a relatively simple starting point and we progressively 

advanced towards the real, more complex, in vitro model that we desired to develop. 

3. Materials and methods 

3.1. Brain tissue sections 

C57BL6/6 mice at postnatal day 7-12 were sacrificed, brain cerebellum were sliced 

at a different thickness (1.9 mm, 0.8 mm, 0.5 mm, 0.3 mm, 0.1 mm) and fixed in 

paraformaldehyde (10%) for 40 minutes. Next, brain sections were washed with 

PBS 2 x 10 minutes and imbibed in 2% low melting point agarose (A9539; Sigma) in 

a 50 ml Falcon tube for imaging. The possibility of performing multi-planar imaging 

allowed us to scan sets of several tissue sections in each experiment, by piling the 

sections inside the agar gels.  

MRI studies were conducted at 7 and 11.7 T Bruker Biospec MRI systems. Image of 

different brain tissue slices and organotypic cultures were acquired with spatial 

resolutions ranging from 25x25x25 µm3 to 100x100x500 µm3.  Different T2-
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weighted imaging modalities have been tested (turboRARE, MSME) with echo-times 

ranging from 30 to 50 ms and repetition times ranging from 2000 to 5000 ms.  Thick 

organotypic slices have been acquired with a turboRARE sequence with a TR=2000 

ms; RARE = 10; effective echo time TE=70 ms; FOV =10 mm x 10 mm; Image matrix 

400 x 400; 24 slices with a thickness of 0.3 mm without a gap. 

Moreover, imaging of thin organotypic cultures was also conducted with a spin-echo 

diffusion technique with a b-value of 1500 s/mm2, gradient pulse duration of δ =6 

ms, gradient pulse spacing of Δ=14ms, TR=2820 ms, slice thickness 0.250 um. 

For the analysis of the images the Signal-to-Noise Ratio (SNR) was calculated for 

white and for grey matter, at the different tissue thickness and for both spatial 

resolutions (Table 1). SNR was defined as the mean signal intensity in a region of 

interest (ROI) of the tissue, divided by the standard deviation of the noise obtained 

from a ROI at the background, outside of the object of interest (SNR= 

meantissue/SDbackground). The Contrast -to-Noise Ratio (CNR) between grey and white 

matter was obtained as the difference of the mean of each tissue divided by the 

standard deviation of the background (CNR= [meanGM - meanWM] / SDbackground).  

3.2. Thick organotypic cultures 

C57BL6/6 mice were sacrificed at post-natal day 10-12. The cerebellum 

immediately extracted and placed in organotypic culture medium, with BME 24 ml 

(41010, Thermo Fisher); 24% HBSS (24020091,  Thermo Fisher); 24 % Horse 

Serum (26050088, Thermo Fisher); 0.125% Glutamine (25030024; Invitrogen); 1% 

antimycotic and antibiotic (A5955, Sigma); 3.5% Glucose (A1422, Panreac) for every 

50 mL. 

 Following this procedure organotypic brain slices of 750 µm thicknesses were 
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cultured. Sagittal sections of the cerebellum were taken using a McIlwain tissue 

chopper (McIlwain). Sections were separated and placed on a Millicel Cell Culture 

Insert membrane (PCIM ORG 50, Millipore) on a P6 plate and incubated in 

organotypic culture media at 37 °C and 5% CO2.  Next, cultures were fixated with 4% 

paraformaldehyde for 40 minutes and kept in PBS (0.05% sodium azide) at 4ºC until 

scanning session. Organotypic cultures were embedded in 2% agarose before MRI 

scanning. For this aim, the membrane of the cell culture insert was gently cut around 

the tissue with a scalpel.  

The MRI sequences and parameters used for imaging these agar gels with imbibed 

cultures was based on the previously optimized sequences for tissue sections, and 

parameters were used in the same ranges as defined before. 

3.3. Thin organotypic cultures 

Thin organotypic culture samples were prepared as described in the previous 

section, but with a thickness of 350 µm, which represent the desired target for our 

experimental in vitro assay (see discussion section).  

Demyelination was always induced after one week of culturing by exposing 

organotypic cultures to 0.5 mg/mL lysolecithin (L4129, Sigma) containing medium 

for 15-17 hours.  

3.4. Myelin specific functionalized liposome synthesis and staining. 

Myelin-targeting liposomes were prepared by the lipid film hydration and extrusion 

method [340] using a mixture of lipids composed by 1,2-distearoyl-sn-glycero-3-

phosphocholine (DSPC: x= 0.6), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-

N-[maleimide(polyethylene glycol)-2000] (ammonium salt) (PEG-DSPE: x= 0.025), 
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DTPA-bis(stearylamide) (gadolinium salt) (Gd-BSA: x=0.017), Cholesterol 

(Cholesterol : x=0.333). All lipids (from Avanti Polar Lipids, AL, USA) were dissolved 

in chloroform:methanol (6:1) mixture.  Films were formed by the evaporation of 

chloroform:methanol (6:1) solution on a rotavapor (high vacuum at 30°C), dried 

under nitrogen flow for 2 h and rehydrated with 7 mL of water at 65°C.  Rehydrated 

liposomes were extruded 14 times at 65°C through polycarbonate membrane filters 

(Whatman, Renfort, UK) using consecutive decreasing pore sizes of 400 nm (x2), 

200 nm (x4) and 80 nm (x8). Once the liposomes were obtained, their lipid content 

quantification was done by Rouser method [341]. 

Gadolinium ions (Gd3+) responsible for the generation of T1 MRI contrast were 

complexed with the lipid Gd-BSA, which is a constitutive element of the liposome 

membrane. It was possible to tailor the magnetic properties of liposomes to get the 

best performance in MRI by modifying the DTPA-BSA percentage during the lipid 

film formation. Four different Gd-BSA concentrations were assayed in order to 

achieve the highest T1 effect (represented as R1 (1/T1) in Fig. 1.5B).  The 

fluorescent die 3,3'-Dioctadecyloxacarbocyanine Perchlorate  (DiOC18) (Life 

Technologies, NY, USA) was added to the formulation into the organic phase before 

lipid film was formed.  

Liposomes were conjugated with the anti-myelin basic protein antibody (Ab62631, 

Abcam) or anti-IgG protein as a control antibody (referred to as control liposomes) 

(Ab18447, Abcam). To address this aim, the antibody was activated by mixing it in 

SATA solution (1:80 mol/mol). Afterwards, the SATA-antibody solution was added 

to the liposome solution in a vial (50 µg of protein per 1 µmol of lipids) and kept it 

overnight at 4°C under N2 atmosphere. Uncoupled protein was removed by 

centrifugation (65000 rpm, 45 min) and the pellet containing the liposomes was 

resuspended in HBS until use. 
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Cell culture inserts were prepared, each of them with 3 thin organotypic slices. After 

one week, cultures were demyelinated as mentioned before. Control cultures were 

not exposed to lysolecithin. Next, cultures were fixated with 4% paraformaldehyde 

for 40 minutes and washed with DPBS. Tissue was blocked with a solution 

composed of DPBS, 0.5% Triton (T8787, Sigma) and 10% goat serum (G9023, 

Sigma) for one hour at room temperature. A volume of 350 µL of liposomes was 

added and samples were incubated overnight at 4°C.  Then, samples were washed 

with 0.1% Triton in DPBS and stained with Hoechst (B2261, Sigma) 10% in DPBS for 

10 minutes. Images were acquired using a Nikon Eclipse 80i digital microscope 

(Nikon) and analyzed using NIS elements AR 3.2 software (Nikon). 

4. Results and Discussion 

The development of remyelination therapies during the last decade calls for the 

development of new techniques for the evaluation of the effect of a given therapy. 

This should be accomplished both in in vivo models and in simpler models, such as 

the organotypic culture, in which remyelination therapies could be tested [156]. In 

this study, we have looked for a reliable, robust and reproducible imaging technique 

for the quantification of myelin in organotypic cultures for high-throughput 

therapies. Magnetic resonance imaging stands out for its high resolution that 

together with an ultra-high field MRI could tackle this issue.  

To evaluate image quality we have made use of the Signal-to-Noise ratio metric 

[342]. High resolution imaging of brain tissue slices of different thickness enabled 

obtaining 2D MR images with high SNR (Fig. 1.2 and Table 1.1), and a good contrast 

between white matter and grey matter regions of the brain. Sagittal 2D images were 

acquired to locate the tissue sections within the agarose gels (Fig. 1.2A), and then 

300 µm thick 2D coronal sections were acquired through the middle section of the 
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tissues, irrespective of the thickness of the tissue slice (Fig. 1.2B).  Moreover, no 

artefacts arising from sample manipulation were detected.  

As shown in Table 1.1, higher SNRs are obtained at higher spatial resolution in all 

the slices, with no substantial differences at different tissue section thickness 

(logical if we consider that imaging slices are all acquired at 300 µm thickness, 

irrespective of the thickness of the tissue section). CNRs also showed similar orders 

of magnitude for all tissue sections and spatial resolutions. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 1.2. Imaging at 7 T of cerebellum of mice at postnatal day 7-12, sliced at various 
thicknesses (1 mm, 0.8 mm, 0.5 mm, 0.3 mm approximately) and fixed in 2% agar. A) Sagittal 
MRI image showing piled cerebellum tissue sections of different thickness imbibed. B) Coronal 
images of the different tissue sections at different spatial resolutions. 
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Table 1.1 SNR and CNR of T2-weighted images of brain slices. 

 

 

What this study demonstrates is that when tissue sections present internal 

structures and tissue boundaries that are well preserved, MRI is capable to 

distinguish white matter from grey matter with a good SNR, and showing good 

contrast between white and grey matter, within a wide range of experimental 

conditions. However, the practical applicability of imaging these brain slices is 

limited, since MRI enables the non-invasive acquisition of in vivo images of the 

whole brain without the need of slicing the brain. In this case, we pursued the use of 

an easy-to-handle experimental setup that resembles the final target tissues, for 

optimization of imaging protocols. Once this goal was achieved, a more ambitious 

objective was targeted by imaging thick organotypic brain slices. 

We have already pointed out that typical organotypic cultures are prepared from 

tissue sections of 300-350 µm thickness when excised from the brain. However, 

before we attempted to image such cultures, we prepared cultures of double 

thickness, to further optimize experimental protocols with reasonably manageable 

samples. In tissues of such thickness maintained in culture, the permeability of 

nutrients and oxygen to the inner parts of the tissues is compromised, usually 

leading to cell loss and tissue necrosis [160]. Even though attempts have been 

carried out for culturing organotypic thick slices [161], their suitability as a model 

Tissue 
thickness 

(mm) 

Ultra Hi-Res (25x25 µm) Hi-Res (50x50 µm) 

SNRGM SNRWM 
CNRGM-

WM 
SNRGM SNRWM 

CNRGM-

WM 

1.0 39.3 26.0 13.4 17.7 11.2 6.5 

0.8 37.1 25.6 11.5 33.7 18.2 15.5 

0.5 32.8 22.9 9.9 25.6 14.8 10.8 
0.3 28.5 22.7 5.8 25.4 16.3 9.0 
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for studying demyelination and remyelination processes is remote. Thus, we 

consider this sort of material as a further step towards our final goal, but not a valid 

model for future studies. 

  

 

 

 

 

 

 

 

Figure 1.3. A) Sagittal view of piled thick organotypic cultures imbibed in agar gel. Air pockets 
are visible as large susceptibility artefacts (signal voids). B) Coronal 2D MRI images of the 
cultures derived from mouse cerebellum at postnatal day 7-12 and cultivated for 7 days. 

 

A set of 5 organotypic cultures of 750 µm thickness at the beginning of the culture 

(slices start to collapse with time so the final thickness is reduced) is presented in 

Fig. 1.3. Only results for the optimized MR imaging sequence and target spatial 

resolution are presented here. The mean calculated SNR for this cultured tissues 

resulted in 62.7 for grey matter and 38.9 for white matter, with a CNR of 31.9 

between both tissues. With these results, we can conclude that actually good quality 

images can be obtained from these cultured tissues where the white matter is still 

clearly identifiable. However, lines defining the limit between white and grey 

matter, as well as external limits of the culture sections are starting to look blurry 
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and less defined, compared to those observed in the prior study with tissue sections.  

After establishing a point of departure with brain slices and thick organotypic 

cultures we aimed at thin (350 µm at the beginning of the culture but <100 µm at the 

imaging experiment) organotypic cultures in a non-invasive way. It should be born 

in mind that flattening and increased transparency of the tissue sections with time is 

actually an indicator of tissue health and survival [160]. In this sense, using mice at 

post-natal day 12 resulted in a more firm structure compared to younger cultures, 

facilitating MRI and, at the same time, enabling tissue survival. Nevertheless, many 

problems were encountered when imaging these cultures. In the first place, it 

resulted more difficult to handle the thin tissues and position them in the agar gels, 

observing the appearance of air bubbles within the agarose gel, leading to 

susceptibility artefacts in MRI images (signal voids), as seen in Fig. 1.4C. In the 

second place, the porous film supporting the culture was hardly kept flat and 

resulted highly complicated to position the 2D transverse imaging plane crossing 

through the whole organotypic section (blended tissues). In the third place, it was 

virtually impossible to distinguish the tissues from the agar on T1, T2 and T2* 

images, since contrast between tissue and background agar was almost absent in 

most images due to partial volume effects, caused by the very small thickness of the 

tissues at the moment of imaging (tissues spread on the surface of the membrane 

from the original 350 µm to < 100 µm at the imaging stage). In some cases, it was 

possible to minimize all these effects and obtain images from the tissue (Fig. 1.4B.) 

but with very low SNR (actually dark contrast) and virtually no distinction of white 

and grey matter.  
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Figure 1.4. Thin organotypic cultures showing, A) optical picture. B) MRI images of 
organotypic cultures. Diffusion-weighted imaging on the left and T2-weighted imaging right. C) 
Representative images of common problems arising from organotypic culture imaging: left, air 
bubble above the organotypic culture; Center, wrong alignment of imaging plane with culture’s 
plane; Right, poor signal due to the thinness of the culture. 

 

In view of these results, we attempted a different approach by conducting diffusion-

weighted imaging (Fig. 1.4B). In this case, SNR of the culture was increased to high 

levels, (>45) but no contrast was observed for the different components of the 

tissue, being useless to follow up differences on myelin content, which was our final 

goal. We have reached a bottle-neck that we have not been able to solve, at this 

point. 

Thus a different final experimental approach was attempted, involving the use of 

myelin-targeting liposomes, for its detection based on a molecular imaging approach 

(Fig. 1.5A).  
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Figure 1.5.  Molecular recognition of myelin. A) Functionalized liposomes with gadolinium and 
fluorophore (DIOC18) that recognize myelin on cultures. B) Left: hydrodynamic diameter 
measured before and after antibody binding to the liposomes; centre: relaxation rate of the 
synthesized liposomes; right: relaxivities of the different synthesized liposomes. Red row 
indicates the optimized liposomes, which were used for the staining. C) Staining of organotypic 
cultures with liposomes functionalized with anti-MBP and anti-IgG (control) after fixation in 
healthy and demyelinated cultures. Cell nuclei are shown in blue and myelin in green. D) 
Common problems found after staining: liposome aggregates (left), non-specific binding of 
control liposomes (centre), non-specific binding of anti-myelin liposome (right). 
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Myelin specific liposomes that target at myelin basic protein were designed 

including the anti-MBP (myelin basic protein) antibody in their surface. For control, 

similar liposomes were prepared using the unspecific anti-IgG protein. Liposomes 

were prepared with a hydrodynamic diameter of 124±1.47 (SD) nm that after 

conjugation with the antibodies resulted in 133.88±1.50 (SD) for the anti-IgG 

antibody and 124.7±1.47I nm for the anti-MBP antibody, as corroborated by 

dynamic light scattering (DLS) measurements (Fig 1.5B).  

Liposomes were constructed including imaging probes for their detection. In a 

multimodal approach, we have included gadolinium chelates, for MRI detection and 

a fluorophore for fluorescence microscopy. One important aspect of this labelling is 

the optimization of the gadolinium content per liposome, since it has been 

demonstrated that an excessive load of this ion could quench the T1 effect and 

reduce the sensitivity of detection and image contrast [343]. Thus, several 

formulations were prepared at different concentrations of gadolinium and the 

magnetic relaxivity of each one was determined by MRI (Figure 1.5B). For this 

purpose, a series of solutions of different concentration were prepared for each 

liposome formulation and the relaxation rates R1, which correspond to the 

reciprocal of the T1 relaxation times (R1=1/T1) were measured (Fig. 1.5B). 

Magnetic relaxivities r1 (mM-1s-1) of each formulation were obtained as the slope of 

the plots of R1 vs. concentration of gadolinium in the liposomes (determined by 

mass spectrometry), as it is shown in Fig. 1.5B. The experimental procedures and 

detailed data analysis were the same as described elsewhere [343]. From our 

studies, we concluded that the optimal load of gadolinium for these liposomes 

resulted in 7.1 x 109 units per liposome and an r1 value of 2.17 mM-1s-1. 

Next, liposomes were tested for their capacity to selectively bind to myelin sheaths, 

in tissue sections. For this purpose, we started our study by using fluorescence 
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microscopy, due to the high sensitivity of detection of this technique compared to 

MRI and to the more simple logistics to prepare samples and measure them. 

Imaging studies showed that green-fluorescent MBP-targeting liposomes can 

specifically bind to myelin in healthy organotypic cultures, while no visible 

attachment was observed when demyelinated cultures were cultured with the 

liposomes (Fig. 1.5C), providing proof-of-concept that this novel approach can 

actually recognize myelin in cultures.   Nevertheless, when performing replicas of 

this procedure, non-specific binding of both MBP-specific and IgG unspecific 

liposomes has been frequently observed together with the formation of liposome 

aggregates (Fig. 1.5D). Certainly, this is a known problem when using liposomes 

with tissue sections, since it has been described that liposomes have shown to bind 

to biological tissue by electrostatic forces or by non-specific hydrophobic forces 

[344]. The fact that specific biding to myelin sheaths has been achieved but not in a 

reproducible manner and at this moment, somehow randomly in our experiments, 

makes our protocol unreliable and poorly robust, requiring of further refinement. 

The staining protocol for fluorescence imaging includes a series of steps such as 

fixation and incubation periods, which substantially degraded the tissue structure. 

Owing to this fact, MRI of these liposome-labelled cultures was not possible. Due to 

the lack of specificity observed in fluorescence studies, the performance of MRI 

studies in non-fixated tissue sections was set on hold, until we could solve the 

conditions for a truly myelin-nanomaterial molecular recognition. Since we cannot 

even assure that liposomes will be the nanosystems finally used for this purpose, 

seems reasonable not to lose time on optimizing MRI experiments with non-working 

nanomaterials. Currently, we are working on the development of such alternate 

nanomaterials, but this represents a whole research line per se, that will run in 

parallel to the further development of this doctoral thesis. We have provided proof-



 
 
 
 
 
 
 

 
102 | Chapter 1 

of-concept for the specific detection of myelin cultures, we have identified the 

problems that represent a bottleneck, and we are working on effective solutions to 

solve them, but at this point, resources must be allocated for the study of the in vivo 

models. 

5. Conclusions 

The development of experimental protocols for the non-invasive in vitro 

characterization of myelin in cultures may represent a breakthrough for the 

performance of high throughput studies of treatments in highly reproducible 

experimental conditions. MRI of thick brain slices of thick organotypic cultures have 

been possible with high SNR and CNR, demonstrating the potential of the technique 

for quantification of myelin. Nevertheless, such systems result inadequate as ex vivo 

models since the preservation of cells at the interior of thick sections in culture is 

highly compromised. On the other hand, thin organotypic cultures present an 

inherent problematic that makes not possible, at this moment, to obtain useful 

protocols for quantification of myelin by MRI. Molecular recognition processes with 

myelin-specific nanomaterials detectable by MRI can provide a valuable solution to 

those problems, but we have not succeeded yet to find a suitable nanosystem to 

assure the required level of specificity and reproducibility. Ongoing research in this 

line will tell us if this is a good approach for the obtaining of experimental ex vivo 

tools for the study of demyelination and remyelination. 
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remyelination in the cuprizone murine model of 

multiple sclerosis: a histological and multiparametric 

MRI study at high spatial resolution 

 

 

 

A. Egimendia et al. (Submitted) 



 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 
 

Chapter 2 | 105 

 

1. Foreword 

Once we have established the potential and the limitations of MRI for the study of ex 

vivo models of demyelination, in this chapter we have advanced towards the 

applications of this imaging technique in in vivo models, in particular, to the 

cuprizone murine model. This model is one of the most broadly used experimentally 

for the study of myelin pathology for several reasons, that include; robustness and 

reproducibility, simplicity, the presence of progressive demyelination and 

spontaneous remyelination phases in the same subject and, specially, mild alteration 

of animal health and welfare. Owing to these features, this model has been widely 

used for the evaluation of therapies targeting multiple sclerosis. 

In this chapter, we have undertaken the challenge for establishing the base for the 

evaluation of myelin content and provide a deeper insight into the cuprizone mouse 

model by running a multiparametric magnetic resonance imaging protocol.  
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2. Introduction 

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system 

characterized by demyelination, resulting in cognitive decline and loss of autonomy. 

Damage can be partially ameliorated by means of remyelination, or restoration of 

the myelin sheath before the axon degenerates.  However, inhibitory signalling, lack 

of growth factors, deficient oligodendrogenesis and cell death make this process 

frequently unsuccessful in MS patients [38]. Consequently, the possibility of 

applying neuroprotective therapies that promote remyelination has been in the 

limelight of scientific research during the last years [26]. 

In the task of understanding the disease and developing novel therapies against it, 

the use of animal models plays a pivotal role. The cuprizone mouse model is 

probably the most widely used in vivo model for the evaluation of remyelination 

therapies. This is one of the called toxic models of MS, where a toxicant is used to 

induce demyelination, presenting spontaneous remyelination after stopping the 

demyelinating insult. Thus, mice exposed to 0.2-0.3% (w/w) cuprizone in the diet 

undergo an increasingly pronounced demyelination peaking at week 5 of 

administration of the toxicant [345]. In this model, the corpus callosum of the mice 

is the most affected region of the brain. After the withdrawal of cuprizone, 

remyelination can be observed already after 4 days, reaching its maximum during 

the following weeks [183].   

For the precise evaluation of novel therapies, it is necessary to define specific and 

sensitive markers of myelin content, ideally using non-invasive techniques. In this 

context, MRI stands out among most imaging techniques because of its non-

invasiveness, high spatial resolution, and multiparametric and versatile nature. In 

the particular case of the cuprizone model, there is a relevant body of evidence in 
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literature tackling the use of MRI to quantify myelin in the brain. Among other 

approaches, myelin visualization has been attempted through its water content. 

Indeed, the direct visualization of myelin is very challenging due to the rapid decay 

of its signal (few microseconds) [346]. However, those very short relaxation times 

have led to define other alternatives aiming at imaging myelin water in an indirect 

manner, using one of the multiple parameters measurable by MRI, such as the use of 

T1-weighted  (T1w) and T2-weighted (T2w)  imaging [196] or a combination of 

both parameters [347], spectroscopy [348], diffusion tensor imaging (DTI) [272],  

magnetization transfer imaging [349], susceptibility weighted imaging (SWI) or a 

multi-exponential determination of T2 relaxation times [350].  

No consensus has been reached in this issue so far, and no single MRI parameter or 

protocol has been adopted as the gold standard for the evaluation of myelin content 

in the cuprizone model, showing all pros and cons that are beneath of the ongoing 

discussion. An additional fact that makes difficult to compare the performance of 

different parameters for myelin content, is that studies are performed at different 

magnetic fields, using different sequences, different reference methods (gold-

standards), different amount of toxic, as well as different exposure times to 

cuprizone (acute vs. chronic), etc. To further deep in this issue and attempt to clarify 

if it is possible to define a robust and reproducible manner to study myelin by MRI 

that can be universally accepted, the evaluation of multiple parameters acquired 

simultaneously in the same imaging protocol for the same experimental conditions 

might be of utmost importance. 

Furthermore, temporal and spatial resolutions at which MR parameters are 

acquired are not minor issues. Myelin is basically present in the white matter tracts 

of rodents. Due to the small size of anatomic structures in the mouse brain, the 

presence of partial volume effects may be quite significant, contributing to 
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confounding effects when spatial resolution is not particularly high. Thus, the use of 

high magnetic fields and magnetic gradient strengths represent an important 

advantage for the mapping of MRI parameters at very high spatial resolution, to 

minimize partial volume effects and increase sensitivity.     

In this study, we have used a multiparametric MR imaging acquisition protocol at 

ultra-high field (11.7T) to achieve high spatial resolution (up to 75 µm/pixel). In this 

way acute demyelination and remyelination processes of the cuprizone murine 

model have been characterized, with a temporal resolution of 1 week during 10 

weeks of evolution, studying as well the long-lasting effects of the toxic compound at 

6 months after the demyelinating insult. Achieving such spatial resolution 

represents an important challenge when adding the constraint of acquiring the 

maximal number of MRI parameters in an experimental protocol of <3h, a time 

constraint imposed for animal welfare reasons. We have been able to include in our 

protocol most of the used parameters described in literature (i.e. T1w imaging, T2w 

imaging, with T1w/T2w ratio, SWI, MTR and DTI imaging), which has allowed us to 

directly compare their capacity to depict changes in myelin at the very same 

experimental conditions with direct registration of parametric images. In addition, 

we include a parallel histological study with Luxol fast blue (LFB), considered a gold 

standard for myelin staining, which has been used to establish the sensitivity and 

specificity of the aforementioned MRI parameters to detect myelin in the cuprizone 

murine model of multiple sclerosis. Our results may bring light to the lasting 

controversy of which MRI-derived parameter, if any, describes best the myelin 

content of the cuprizone mouse model. 
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3. Materials and methods 

3.1. Animals and experimental protocol 

Animal experiments were performed in our SPF facilities under a full accreditation 

from the Association for the Assessment and Accreditation of Laboratory Animal 

Care International (AAALAC). All animal procedures were approved by our 

Institutional animal care and use committee (IACUC) and local authorities (License 

PRO-AE-SS-089, Diputación Foral de Gipuzkoa, Spain). 

Ad libitum access to food and water was provided to the animals under controlled 

light environment (12h light/dark). Fifteen mice were exposed to 0.2% (w/w) 

cuprizone diet (Envigo TD.140800) for a period of 5 weeks. Six mice (n = 6) were 

scanned at 11.7T on a weekly basis from week 0 to week 10 (11 scanning sessions) 

sacrificing them after the last imaging session for histological analysis. In addition, 

other 6 mice (n=6) from a total of 15 were sacrificed at week 5 for the histological 

analysis. Three of the total of 15 (n=3) were scanned 6 months after being exposed 

to cuprizone. Cuprizone containing pellets were renewed every 3 days. The same 

approach was conducted with n=15 animals fed with regular diet as the control 

group (n=6 mice sacrificed at week 5, n=6 sacrificed at week 10 and n=3 animals 

sacrificed at month 6, all scanned by MRI on a weekly basis and finally submitted to 

histology). No single animal was lost during the performance of this study. 

3.2. MRI 

MRI measurements were performed on an 11.7 Tesla (T) horizontal bore Biospec 

117/16 scanner (Bruker Biospin, Ettlingen, Germany) with a mouse brain surface 

coil for the reception and a volumetric coil for transmission. Anaesthesia was 

induced with 4% isoflurane and kept at 1.5-2% during scanning. Respiration rate 
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and rectal temperature of the animals was continuously monitored inside the 

magnet with an MR compatible device (Model 1030, SAII,  Stony Brook, NY, USA). 

After manual tuning and matching of RF-coils and automatic setup of the system 

(i.e., pulse power calibration, shimming, and setting on resonance frequency), 3 

scout images were acquired in axial, coronal and sagittal directions using a Flash 

sequence, as reference for the rest of the study, composed by a series of MR images 

of different contrast, acquired by different pulse sequences (Fig. 2.1):  

1) Susceptibility weighted imaging (SWI) was achieved with a gradient echo 

sequence with TR/TE=1200/6 ms, FOV 12.75 mm x 12.75 mm, matrix size 

170x170 (75 µm in-plane resolution), flip angle of 60º, Nav= 3 averages and 

24 consecutive slices of 500 µm thickness (covering the whole brain in a 12 

mm field of view along z axis). 

2) Magnetization transfer imaging was achieved acquiring 2 sets of 2 images 

(with different MT pulse strengths each image) using a FLASH (fast low 

angle single shot) pulse sequence using TR/TE=400/3 ms, FOV 25.6 mm x 

25.6 mm, matrix size 256x256 (100µm in-plane resolution), a flip angle of 

40º, Nav=6 averages and 2 sets of 12 consecutive slices of 500 µm thickness 

(covering the whole brain in a 2x6 mm field of view along z axis). MT 

contrast was generated by a pulse at irradiation offset of 4000 Hz, amplitude 

7.8 µT and length 20ms (Msat) acquiring for reference a second image (M0) 

with identical parameters except for the irradiation offset of 30000 Hz.  

3) T1-weighted images were acquired with a TurboRARE image sequence using 

a RARE factor of 2, TR/TEeff=1200/6.0 ms, a FOV 12.75 mm x 12.75 mm and 

matrix size 170x170, giving an in-plane resolution of 75 µm, a flip angle 90º, 

Nav= 6 averages and 24 consecutive slices of 500 µm thickness (covering the 
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whole brain in a 12 mm field of view along z axis). 

4) T2-weighted images were achieved with a TurboRARE image sequence using 

a RARE factor of 8, TR/TEeff=4938/40 ms, a FOV 12.75 mm x 12.75 mm and 

matrix size 170x170, giving an in-plane resolution of 75 µm, a flip angle 90º, 

Nav= 8 averages and 24 consecutive slices of 500 µm thickness (covering the 

whole brain in a 12 mm field of view along z axis). 

5) Diffusion parameters were obtained with a spin-echo-DTI pulse sequence 

acquired using TR/TE=1410/20 ms, FOV 12.8 mm x 9.6 mm and matrix size 

128x96, giving an in-plane resolution of 100 µm, a flip angle of 90º, a b-value 

of 1000 mm-2s (using δ= 4 ms and Δ= 11 ms), 40 gradient directions, 5 b0 

images and Nav=1 average. 24 consecutive slices of 500 µm thickness were 

acquired to cover the whole brain in a 12 mm field of view along z axis). 

Thus, total scanning time of the complete imaging protocol resulted in 2h 24m (5’ 

for 3 scout images + 30’40’’ MTR + 10’12’’  SWI + 12’34’’ for T2w + 9’21’’ for T1w + 

76’ for DTI), not considering  time required for adjustments and animal positioning.  

3.1. Image analysis 

Image analysis was performed automatically using in-house routines implemented 

in Linux and manually inspected after completion. First, some preprocessing was 

performed for each image. Voxel dimension units were multiplied by 10, to improve 

the processing performance of FSL [FMRIB (Oxford Centre for Functional MRI of the 

Brain) Software Library; http://www.fmrib.ox.ac.uk/fsl, (Jenkinson et al., 2002; 

Smith, 2002)], taking into account the reduced dimensions of the rodent brain 

compared to human brain. Additionally, diffusion images were denoised using local 

PCA-based algorithm [351] implemented in Dipy library [352] for python.  
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Figure 2.1. Imaging protocol. T2-weighted (T2-w), T1-weighted (T1-w), T1-w/T2-w ratio 
(T1w/T2w), susceptibility weighted imaging (SWI) magnetization transfer ratio (MTR), 
fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity 
(MD) images are shown. In the first column, images corresponding to the control group, the 
other columns correspond to cuprizone exposed mice for 5 weeks, and scanned at weeks 5 and 
10, and 6 months from the beginning of exposure 
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Next, all images were placed in the same space as a downsampled in-house template 

of the mouse brain. The high resolution T2w image was used for achieving optimal 

brain extraction and registration by skull stripped and bias correction using FSL, 

followed by registration to the in-house template. For each image session, the rest of 

images acquired with different MR modalities underwent the same brain extraction 

and registration transformation as the one performed in the T2w image (all images 

acquired per session have the same origin of coordinates and image orientation). 

Simultaneously, the publicly available AMBMC (Australian Mouse Brain Mapping 

Consortium, http://www.imaging.org.au/ AMBMC/) C57BL/6J mouse atlas was 

registered to the template for later automatic selection of ROIs. 

Once the images were placed in the same space T1w and T2w images were divided 

(to create parametric images for T1w/T2w ratio) and MTR parametric images were 

calculated with the following formula: MTR = [(M0-Msat)/M0]x100, were M0 and 

Msat are the images acquired with 30 kHz and 4 kHz off-resonance pulses, 

respectively. Additionally, the mean signal of T1w, T2w and SWI images were 

normalized (whole brain signal = 10000), to enable inter- and intra-individual 

comparison of images all along the study. 

A series of regions of interest (ROIs) were selected and extracted using the AMBMC 

anatomical atlas for their definition, covering both grey matter and white matter 

regions. These regions include: the corpus callosum (CC), the cerebellar peduncles 

(CP), the hippocampus (Hc), the thalamus (Th), the caudate putamen (CPu), the 

hypothalamus (Hyth), the motor cortex (MC) and the cortex (C) (comprising de 

somatosensory cortex and auditory cortex). The CC was subdivided in the medial 

corpus callosum (med-CC), the genu of the corpus callosum (genu-CC) (ROI of the 

genu-CC was manually drawn after visualization of abnormalities in this regions) 
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and the lateral corpus callosum (lat-CC) as might exhibit a different demyelination 

temporal pattern. Finally, the mean intensity of each ROI was calculated for every 

image. Calculated values were averaged group-wise and the standard deviation (SD) 

was calculated for each ROI and parameter. In this way, a mean±SD was obtained for 

each region and parameter for every single week of study. 

3.2. Histology 

At weeks 5, 10 and at 6 months of study animals allocated for histology were 

perfused and tissues processed for LFB staining. Briefly, animals were deeply 

anaesthetized and transcardially infused with 20 mL of heparin-saline (20 units per 

mL of saline), followed by 20 mL of 10% formalin. Brains were dissected and fixed in 

10% formalin at 4°C for 24 h, followed by 20% sucrose in PBS until they sank. Brains 

were frozen in dry ice cooled isopentane, and stored at -80ºC until processed. 

Twenty-five micrometre thick sections were cut on a cryostat (Leica CM3050S, Leica 

Microsystems, Germany) and stored at -20ºC until stained. Samples were stained 

with Luxol fast blue (LFB) (Sigma, S3382) and cresyl violet (Sigma, C5042) and 

analyzed on a cell observer microscope (Axio Observer, Carl Zeiss, Germany). 

ImageJ software [353] was used for image displaying purposes and manual analysis. 

Blue (LFB, myelin) and purple (cresyl violet, cell nuclei) channels were split using 

customized Color Deconvolution plugin of ImageJ. Pixel intensity values in images 

were converted to optical density (OD) for myelin quantification. For the evaluation 

of imaging markers for myelin, medial corpus callosum (med-CC), lateral corpus 

callosum (lat-CC), the cerebellar peduncles (CP) and the cortex were manually 

selected for both histological samples and MRI images, used for correlation analysis 

(parametric MRI analysis was performed with automatic ROI selection). Control 

samples from week 5 and week 10 were grouped. 
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3.3. Statistical analysis 

Graphpad/Prism software was used for statistical analyses. Normality assessment 

was performed with quantile-quantile (Q-Q) plot [354]. For normally distributed 

data the statistical significance of the difference between groups was determined by 

a two-way analysis of variance (ANOVA). Afterwards, unpaired t-test was applied. If 

the sample did not follow normal distribution a Mann-Whitney test was applied. 

Statistical significances were set at p>0.05 (*). 

Afterwards, linear regression was performed with the data collected in MRI and LFB 

and the Pearson’s correlation coefficient (r) and r2 were estimated for evaluation of 

the specificity of each parameter. Statistical significances were set at p>0.05 (*). 

4. Results 

4.1. Variations on MRI parameters with demyelination and remyelination 

processes 

It has been reported that mice exposed to 0.2% cuprizone in diet suffer progressive 

signs of demyelination for 5 weeks, mostly in the CC [345]. Afterwards, mice present 

spontaneous remyelination during the following weeks, being completed at week 

10. This pattern has been confirmed in our studies, and in Fig. 2.2 we present the 

values obtained for the measured MRI parameters at these time-points for 

cuprizone vs. control animals, together with the long-lasting effects caused by 

cuprizone at the chronic stage of 6 months from the demyelinating insult. To our 

knowledge, no data at such long period of time is available in the literature, although 

a stage of so-called “chronic” demyelination has been reported for animals 

submitted for 12 weeks to cuprizone diet [355]. 
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Figure 2.2. Plots representing parametric values obtained with the different sequences at the 
med-CC of cuprizone exposed (grey bars) vs. control (black bars) mice. Normalized T2w and 
T1w signal intensities, normalized SWI signal intensity, magnetization transfer ratio (MTR), 
fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity 
(MD) values are plotted at week 0, 5, 10 and month 6 after starting cuprizone administration. 

 

In order to assess the capacity (sensitivity) of the studied parameters to depict 

alterations in myelin content we used the med-CC region of interest, where 

extensive demyelination takes place. In this region, at week 5, demyelination leads 

to increased values of T2w, T1w and SWI normalized signal intensities, as well as in 

RD in the cuprizone group respect to controls, while the parameters T1w/T2w ratio, 

MTR and FA showed decreased values in the cuprizone group, respect to controls. 

No significant differences were observed for axial and mean diffusivities at this 

time-point. In terms of magnitude, the MRI parameter that shows the largest 

difference between cuprizone treated animals and controls was the normalized T2w 

signal intensity, which was a 28.3% higher for the cuprizone treated group (Control 
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= (9.2±0.4)x103 a.u. vs Cuprizone = (11.8±1.0)x103 a.u., ΔT2w = 28.3% , p<0.001). 

Following, by order of difference, normalized SWI signal intensity (Control = 

(12.3±0.2)x103 a.u. vs. Cuprizone =  (14.3±0.5)x103 a.u., ΔSWI = 16.3%, p<0.01), MTR 

(Control = 26.4±0.9% vs. Cuprizone = 23.4±0.4%, ΔMTR= -12.8%; p<0.01), FA 

(Control = 0.46±0.02 vs. Cuprizone = 0.41±0.02, ΔFA= -12.2%, p<0.05), normalized 

T1w signal intensity (Control = (10.3±0.4)x103 a.u. vs. Cuprizone = (11.4±0.7)x103 

a.u., ΔT1w = 10.7%, p<0.001), and RD (Control = (0.51±0.01)x10-3 mm2s-1 vs. 

Cuprizone = (0.56±0.00) x10-3 mm2s-1, ΔRD=9.8%, p<0.01). 

It has been described that once cuprizone is withdrawn from diet remyelination 

leads to the restoration of myelin sheaths [355]. If we set our attention to week 10, 

five weeks after withdrawal of cuprizone, when spontaneous remyelination has 

taken place, some of the parameters still show significant differences between 

controls and cuprizone treated animals, although differences are reduced respect to 

those observed for week 5. In particular T2w normalized signal intensity (Control = 

(9.4±0.4)x103 a.u. vs. Cuprizone = (10.9±0.2)x103 a.u., ΔT2w = 5.34%  p<0.001), SWI 

(Control = (12.3±0.4)x103 a.u. vs. Cuprizone = (13.5±0.3)x103 a.u., ΔSWI = 9.8%, 

p<0.01) and for FA (Control = 0.48±0.02 vs. Cuprizone = 0.41±0.00, ΔFA = -17.1%, 

p<0.05). For Radial diffusivity, the difference between controls and cuprizone 

treated animals actually increases from week 5 to week 10 (Control = (0.51±0.03) 

x10-3 mm2s-1 vs. Cuprizone = (0.57±0.01)x10-3 mm2s-1, ΔRD= 11.8%  p<0.05). Finally, 

differences in T1 and MTR diminish, so the mean values of these two parameters 

become not significantly different between controls and cuprizone treated animals, 

at week 10. When evaluating remyelination, which might be reflected in a signal 

change comparing the peak of demyelination (week 5) and the remyelinated 

condition (week 10) T2w imaging is the only one exhibiting a significant difference 

(ΔT2w =7.8%, p<0.05). 
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If we analyze data obtained at month 6 after the demyelinating insult, only 

normalized T2-weighted signal intensity (Control = (9.2±0.2)x103 a.u. vs. Cuprizone 

= (10.6±1.0)x103 a.u., ΔT2w = 15.2% , p<0.05), normalized T1-weighted signal 

intensity (Control = (10.5±0.2)x103 a.u. vs. Cuprizone = (10.9±1.0)x103 a.u., ΔT2w = 

3.8% , p<0.05), MD (Control = (0.73±0.01)x10-3 mm2s-1 vs. Cuprizone = (0.77±0.03) 

x10-3 mm2s-1, ΔMD=5.2%, p<0.05) and RD (Control = (0.53±0.01)x10-3 mm2s-1 vs. 

Cuprizone = (0.59±0.03)x10-3 mm2s-1, ΔRD=11.38%, p<0.05) showed significant 

differences between controls and cuprizone treated groups, while MTR, SWI, FA and 

AD showed not significant differences for these two groups in the med-CC ROI.  

In this setting, the sensitivity of several parameters to myelin pathology has been 

observed. MD and AD did not show any difference at the peak of maximum 

demyelination (week 5). Due to this factor, the MD and AD metrics have been 

discarded for the histological validation and characterization of the model. A similar 

analysis was performed for other brain regions, automatically selected by co-

registration of the data to a segmented atlas of the brain. The temporal evolution of 

relevant parameters will be discussed later in this work.  

4.2. Luxol fast blue quantitation of myelin content  

Optical density measurements of Luxol fast blue staining (LFB-OD) in histological 

sections of brain tissue revealed significant demyelination in the cuprizone mouse 

model (Fig. 2.3). After 5 weeks of exposure to the toxicant, OD was 118% higher in 

the med-CC of control mice compared to cuprizone treated mice (Control = 

0.24±0.05 vs. Cuprizone = 0.11±0.04,  p<0.05),  69% higher in the lat-CC, (Control = 

0.27±0.05 vs. Cuprizone = 0.16±0.06, p<0.05) and 110% higher in the CP (Control = 

0.21±0.04 vs. Cuprizone = 0.10±0.08, p<0.05). As expected, these values were 

reduced at week 10 due to remyelination phenomena: OD was 14% higher in the 
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med-CC (Cuprizone = 0.21±0.02, not significantly), 50% higher in the lat-CC 

(Cuprizone = 0.18±0.04, p<0.05) and 40% higher in the CP (Cuprizone = 0.15±0.04, 

p<0.05) compared to the values reported for the control group. The med-CC was the 

only ROI showing a significant difference (p<0.05) when comparing values obtained 

at w5 vs. w10 for the cuprizone group, not finding any differences for the control 

group. No significant difference was found in the cortex. 

 

 

 

 

 

  

 
 
 
Figure 2.3. Luxol fast blue (LFB) staining of myelin for cuprizone treated and control mice. A) 
Images showing demyelination and remyelination in the lat-CC, med-CC and CP in control mice, 
after 5 weeks of exposure to cuprizone and at week 10 of the experiment. B) Optical density 
(OD) measures of LFB staining in the med-CC, lat-CC, CP and C in manually drawn ROIs. 

 

Plots of LFB-OD versus the different MRI parameters were constructed, using data 

from different ROIs of the brain and linear regressions were calculated, together 

with Pearson’s correlation coefficients (r) and r2, in order to evaluate the specificity 

of each parameter as an imaging biomarker for myelin (Fig. 2.4).  
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Figure 2.4. Linear regression of relevant parameters obtained by MRI vs. LFB Optical densities. 
Data presented includes values from the region of interest medial corpus callosum, lateral 
corpus callosum, cerebellar peduncles and cortex.  
 

The normalized signal intensity of T2w images showed the highest correlation with 

LFB-OD values (r2 = 0.84, p<0.001), with a negative slope indicating that the higher 

the content in myelin the lower the T2w signal. The correlation between LFB-OD 
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and RD (r2 = 0.76, p<0.001), normalized T1w signal intensity (r2 0.72, p<0.001) and 

FA (r2 0.47, p<0.05), also showed significant correlations with LFB-OD values. No 

significant correlation was observed for MTR and SWI. The low degree of correlation 

observed for some of the measured MRI parameters indicate that changes observed 

may include other confounding effects (false positives) apart from changes on 

myelin content, compromising their specificity. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.5. T1w/T2w ratio measured for different temporal points for non-normalized T1-
weighted and T2-weighted images. A) T1w/T2w ratio for control, week 5, week 10 and 6 
months. B) linear regression of T1w/T2w ratio vs. LFB optical density (left) and temporal 
pattern shown for the whole study compared to control. 
 

Combination of different measured MRI parameters was conducted, and we could 

observe that the ratio T1w/T2w shows a good contrast between gray and white 

matter (Fig. 2.5A), with good sensitivity to myelin damage at week 5 (Control = 
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1.28±0.05 vs. Cuprizone = 1.02±0.06, ΔT1w/T2w= -25.5%, p<0.001) and a reduced 

difference between cuprizone exposed and control group at week 10 of study 

(Control =1.32±0.02 vs. Cuprizone = 1.17±0.10, ΔT1w/T2w = -12.8%, p<0.05) and 

after 6 months of exposure to cuprizone (Control =1.47±0.02 vs. Cuprizone = 

1.33±0.05, ΔT1w/T2w = -10.5%, p<0.01). However T1w/T2w ratio exhibited a 

slightly worse correlation with LFB staining than T1w or T2w by themselves (r2 = 

0.67). In parallel to correlation studies, a deeper analysis of histological images 

revealed areas of accumulated myelin debris near the medial section of the corpus 

callosum at week 5 (arrows in Fig 2.6A).  

 

 

 

 

 

 

 

 

 
Figure 2.6. LFB-cresyl violet staining of a cuprizone treated animal. A) Representative cresyl 
violet staining after 5 weeks under cuprizone. Corpus callosum is magnified. Arrows indicate 
myelin debris, probably phagocyted by microglia. Arrowhead points a high cell density (most 
likely microglia) colocalized with a region of high demyelination B) Representative cresyl violet 
staining of the corpus callosum in control, in demyelinated (W5) and remyelinated (W10) mice. 
Cell density peaks at week 5 and is reduced again at week 10 in the corpus callosum. 
 

Co-staining of these sections with cresyl violet showed that the highly demyelinated 

region at the centre of the med-CC (lack of LFB staining) is actually a region of high 
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density of cresyl violet positive cells, at higher density than control animals before 

cuprizone treatment. At week 10, after remyelination, cell density in this area is 

reduced again to quasi-normal levels (a slight increase on cell density is still 

observable at this time point) (arrowhead in Fig 2.6A and Fig 2.6B). These results 

may reflect the activity or reactive microglia in this animal model 

4.3. Profiling of the temporal evolution of MRI parameters in the cuprizone 

model  

A follow up of the values of the MRI parameters have been performed for 10 weeks, 

with a temporal resolution of 1 week, including a final exploration of animals 6 

months after the demyelinating insult. In this way, acute demyelination (weeks 0-5) 

and spontaneous remyelination (weeks 5-10), as well as chronic state (month 6) 

periods of the model were studied by multiparametric MRI. 

From data reported in the previous two sections we can conclude that in our 

experimental setup T2w, T1w and radial diffusivity show a highest correlation to 

Luxol fast blue staining together with sensitivity to demyelination. For this reason, 

the temporal evolution of these parameters have been studied. 

The use of high-resolution imaging (minimizing partial volume effects) and image 

analysis in a common space for all images allowed us to determine that in this model 

there are different temporal profiles of evolution of MRI parameters, depending on 

the region of interest analyzed. In other words, it seems that demyelination and 

remyelination take place at a different pace for different regions of the brain (Fig. 2.7 

and Fig. 2.8). 

Focusing on T2w imaging, the most sensitive and specific parameter according to 

previous data, the med-CC in the cuprizone group showed a slight increase between 
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weeks 0 and 2, and from that point an abrupt increase is observed (ΔT2w SI w2-w3= 

20%), peaking at week 5 (ΔT2w SIw0-w5= 30%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 2.7.  Temporal patterns of demyelination and remyelination  in the medial region of the 
corpus callosum (med-CC), the cerebellar peduncles (CP), the genu of the corpus callosum  
(genu-CC) and the cortex (C) of the mice exposed to cuprizone (0.2%, weeks 0-5) measured with 
normalized T2-weighted and t1-weighted signal intensity and radial diffusivity (RD).  
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From that point, values remain higher for cuprizone exposed animals, with a slow 

reduction between weeks 5 and 10 (ΔT2w SIw5-w10= -10.72%). This tendency is 

continued until 6 months when T2w signal intensity values were 14% higher than 

those observed at the beginning of the experiment for cuprizone treated animals. 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 2.8. T2-weighted images of mice during their exposure to cuprizone (0.2%). Cuprizone 
induces demyelination with a different temporal pattern in cuprizone exposed mice in the genu-
CC, med-CC and CP. Red arrow indicates the central genu of the mice, which is highly 
demyelinated at week 2 and remyelinated at week 4. 

 

A different pattern was observed for the CP, that shows a progressive increase 

already from the first week after exposure, peaking at week 4 (ΔT2w SI w0-w4=19% 

for cuprizone group). Then differences in T2w signal remained invariable until week 

8 when there is a sudden decay to the final values, almost constant from week 9 to 
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month 6 at values 10% higher than those observed at week 0 for cuprizone animals.  

A third different pattern was observed for the genu-CC, where an abrupt increase of 

T2w signal intensity values was observed for the cuprizone group between week 1 

and week 2 (ΔT2w SIw1-w2= 51%), still increasing until week 3. At this point, values 

suddenly drop (ΔT2w SIw3-w4= -21%, ΔT2w SIw0-w4= 24%), remaining invariant until 

week 8, when values start to progressively decay to those observed at the beginning 

of the study at month 6 (ΔT2w SIw8-m6= -19%, ΔT2w SIw0-m6= 3.3%).  

No significant differences on T2w signal intensity were observed for ROIs including 

Hp, Th, CPu, Hyth, C and MC all along the study, as can be appreciated in Fig. 2.8. 

T1w imaging reproduces pretty accurately the pattern followed by T2w image, even 

though showing a less pronounced effect. Changes on radial diffusivity are more 

complex to analyze. First, DTI images have been acquired at lower spatial resolution 

than T2w images (3µl vs. 1.7 µl per voxel) due to hardware-and scanning time 

related constrictions. Thus, partial volume effects gain importance, which may have 

capital importance on the measured values, especially relevant for small ROIs, and 

considering the small difference observed for the mean RD values, respect to their 

standard deviations (see plots in Fig. 2.7). Thus, although RD is sensitive enough to 

detect the difference between controls and cuprizone treated animals at points of 

maximal demyelination and remyelination, this parameter may be not sensitive 

enough to depict changes with a temporal resolution of 1 week in this model. A look 

at plots presented in Fig. 2.7, however, reveals that RD predicts delayed loss of 

myelin in comparison to T2w imaging which would start from week 3-4, and 

peaking between weeks 6 and 9, depending on the region of interest analyzed. 

Further decline of values during remyelination and at chronic phases are mild, 

except for the genu-CC where the drop is significant from week 9 to month 6. The 
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fact that axonal damage, irrespective of loss of myelin or not, affects RD values (see 

discussion) may be an important factor to consider when analyzing RD results.    

5. Discussion 

5.1. MRI based imaging biomarkers sensitive and specific for myelin 

The establishment of robust parameters for the accurate evaluation of myelin 

pathology and a deeper understanding of demyelination and remyelination 

dynamics is a task of utmost importance for the assessment of remyelination 

therapies. So far, many studies have been conducted in this direction using the 

cuprizone mouse model [187], [198], [202], [250], [267], [356], [357], nevertheless, 

these works leave room for a series of improvements that we have tried to fill with 

this work. In particular, 1) we have tackled a complete multiparametric approach, 

allowing the comparison of different MRI parameters in exactly the same 

experimental conditions, 2) we have used high spatial resolution (100-75 µm per 

pixel at slice thickness of  500 µm) to minimize the influence of partial volume 

effects, 3) we have performed a correlation between MRI parameters with the 

histological gold standard for myelin (LFB) and finally, 4) we have studied the 

dynamic changes of multiple parameters at multiple brain regions during the acute 

demyelination and remyelination, as well as chronic stage of the cuprizone model, 

being able to establish the existence of different temporal profiles at different areas 

of the brain. Most of the published works tackle these aspects only in part, giving a 

partial view of the whole picture. To our knowledge this is the first work that 

considers all these issues simultaneously, for a more global analysis, being able to 

report some interesting findings not described before. All in all, we believe that data 

reported here is a contribution that deserves to be considered for the tasks of 
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defining MRI-based imaging biomarkers of myelin in the cuprizone model. 

The first aim of this study has been to evaluate the degree of effectiveness of 

different MRI parameters to quantify myelin content in the cuprizone mouse model, 

for which measurements were conducted in the area of more extensive 

demyelination in this model, the medial section of the corpus callosum (med-CC). In 

order to be considered a good biomarker of myelin, an MRI parameter should be 

sensitive enough to depict demyelination observed in this region. In this sense, all 

analyzed parameters except MD and AD have been able to show significant 

differences of demyelinated mice (week 5) compared to healthy mice. These results 

are in line with previously reported findings [268], [358]. The parameter that 

showed a higher sensitivity of all was T2w signal intensity, in agreement with 

previously reported works [186], [187], [196], [198]. In addition to extensive 

changes observed at week 5 upon cuprizone diet in the med-CC, this parameter has 

been the only one describing the remyelination process significantly, taking place 

for 5 weeks after discontinuing the poisoning with cuprizone. In addition, in a 

previous study, this parameter has been shown to be sensitive to even detect 

cortical demyelination in a model of chronic demyelination (12 weeks non-

interrupted cuprizone diet) [187], which is not described for the acute 

demyelination model (5 weeks on cuprizone diet). 

Histological studies actually confirm the great correlation (r2 = 0.84) existing 

between T2w signal intensity and optical density in Luxol fast blue staining (a gold 

standard for myelin), demonstrating the good specificity of this MRI parameter for 

the cuprizone model, a result that is in agreement with previous literature [223]. 

The use of T2w signal intensity as imaging biomarker of myelin has further 

advantages beyond its sensitivity and specificity. Conversely to other imaging 
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modalities such as MTR or DTI, T2w imaging is straightforward with lesser demand 

on the MRI hardware, is less prone to image artefacts than, for example, SWI, and 

allows higher spatial resolutions in relatively short times because of its high SNR, 

compared to other sequences. However, it should be mentioned that T2w imaging is 

not only sensitive to myelin demyelination but also to other processes such as 

inflammation, oedema, axon loss [359], micro-bleedings, iron accumulation, protein 

aggregation, etc. Those processes may act as confounding effects and lead to false 

positives, overestimating (or masking, depending on the process) changes in myelin 

content. This is one of the advantages of the use of the cuprizone model, since barely 

any of the aforementioned processes with influence on T2 are present in an 

extensive manner, allowing the direct correlation of T2w signal with myelin content. 

It should be mentioned that axon loss has been reported with higher administration 

of cuprizone [360], where white matter damage is more extensive. 

However, results and conclusions extracted here may not be extrapolated to other 

animal models or experimental contexts beyond the features of the cuprizone mouse 

model. In this sense, it is important to bear in mind that research in multiple 

sclerosis requires parameters sensitive to demyelinating plaques that can accurately 

correlate with the lesion burden in patients. In this context, T2w imaging has 

limitations probably due to the deep pathological processes that take place in 

demyelinating plaques, which go far beyond the change on myelin content. 

Nevertheless, it might be suitable to detect remyelinating events and assess the 

effectiveness of a given treatment in clinical studies [361]. 

In this sense we can consider the fact that other studied imaging parameters have 

shown enough sensitivity and specificity to myelin, such as radial diffusivity and 

T1w imaging. Thus we postulate that a multimodal approach that includes the 

measurement of several parameters will always be better than measuring just one, 
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to help to avoid confounding effects, an issue that we will discuss later in this work. 

Interestingly, the use of combined T1w and T2w imaging through the T1w/T2w 

ratio has been proposed in the literature for increasing the sensitivity of MRI to 

detect myelin in the brain, mainly in cortical regions [246], [347]. In our work, we 

have not found that this ratio improves the sensitivity achieved by T2w signal 

intensity itself. On the contrary, the reduced degree of sensitivity and specificity 

observed for T1w, compared with those observed for T2w, resulted in a worse 

performance of the T1w/T2w ratio than T2w. An explanation for the apparent 

discrepancy of our findings and previous literature may be found on the difference 

on the used magnetic field (11.7T in our study,) in comparison with published 

works, mostly in clinical scanners at 1.5T or 3T (T1 and T2 values and relationship 

are quite different at ultra-high fields, respect to clinical ones). In fact, T2 values at 

high or ultra-high field are very low, compared with clinical fields, which makes 

much more difficult to avoid any trace of T2 weighting on T1w images (a minimal 

echo time TE>0 is something that we cannot avoid when acquiring T1 images, and 

when T2 values are low, T2w contamination on T1w images is higher). On the other 

hand, partial volume effects may also have some impact in relation to this 

discrepancy. Thus, resulting equally valid for the study of myelin content, the better 

performance of the T1w/T2w ratio respect to T2w alone, as a marker of myelin, may 

be dependent on the experimental conditions.  

In this sense, radial diffusivity represents an interesting contribution that should be 

considered. Indeed there are reports in the literature on the capacity of RD to 

monitor both demyelination and remyelination in the cuprizone model, and this 

parameter has been suggested as a promising biomarker of myelin in MS [362]–

[364]. We have observed that RD is specific and sensitive to demyelination, but not 

sensitive enough to monitor remyelination, at least in the extension achieved in our 
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experimental conditions. Interestingly, the same pattern is observed in MD 

parameter during remyelination. 

In respect to other diffusion related parameters, FA has shown high sensitivity but 

very low specificity for myelin content, while MD and AD were not sensitive for 

myelin. These findings are in line with previously reported results [365]. The same 

conclusion as extracted for FA can be extended for MTR and SWI imaging, which 

have shown sensitivity but not specificity for myelin. In this sense, we do not reach a 

consensus with previously reported works and thus, Thiessen and colleagues defend 

a strong correlation between MTR values and the myelinated axons fraction, 

measured in electron microscopy images of the corpus callosum of cuprizone 

exposed mice [198]. However, those authors studied only the demyelinating process 

(MR imaging during 6 weeks at which cuprizone was continuously administered) 

and did not include remyelination periods. It is a general observation in our study 

that while most of the measure MRI parameters where sensitive to detect 

demyelination, they lose sensitivity when detecting remyelination, which is much 

subtle in this model than demyelination. Here may lay an explanation for the 

observed discrepancies. Regarding SWI, although myelin is considered to be an 

important contributor to the T2* effect characterizing SWI imaging, further 

processes related to iron deposition might influence signal [250] and resulted less 

useful than T2w signal in our study (also susceptibility effects observed at 11.7T are 

very high, limiting the use of SWI images). 

Altogether our results suggest that normalization of T2w imaging might be 

considered a robust and straightforward approach for evaluation of myelin content 

in the cuprizone mouse model at high or very-high magnetic fields. Moreover, the 

short acquisition time of T2w imaging respect to other imaging modalities permits 

the scanning of a higher number of animals per day, substantially improving the 
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logistics of the study. Results would be further supported by the acquisition of T1w 

imaging and RD, which have also shown a good performance throughout the study. 

5.2. Temporal patterns of demyelination-remyelination processes in the 

cuprizone mouse brain 

After having defined three useful parameters for the quantification of myelin 

changes in the cuprizone mouse brain, we proceeded to study myelin evolution with 

time during the acute phase of demyelination (weeks 0-5 during cuprizone diet) and 

remyelination (weeks 5-10, back to toxicant-free diet), as well as a very chronic 

stage of demyelination (6 months after the demyelinating insult). This pattern has 

been thoroughly followed and deciphered by T2w imaging in different regions of the 

brain, as discussed in the following lines. 

As previously reported the region of med-CC showed progressive demyelination 

from the beginning of the administration of cuprizone until week 5 of the study (Fig. 

2.7). At this point cresyl violet staining has revealed high cell density in the med-CC, 

probably indicating phagocytosis conducted by microglia [189], [366]. This is 

supported by the myelin debris found around de corpus callosum together with a 

high cell density at this stage.  

 A slightly different temporal pattern was observed in the CP, were demyelination is 

evident at week 4 of experiment and remaining stable from that point to week 8, 

despite having interrupted cuprizone administration at week 5. Furthermore, our 

data indicate that demyelination in the central part of the genu of the corpus 

callosum is extensive already at week 2. This condition is reversed at week 4 of 

experiment and animals present remyelination in this region, despite still being 

under the cuprizone diet. Other authors have reported demyelination onset at week 
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3 of cuprizone diet [184], but demyelination at week 2 of exposure to 0.2 % of 

cuprizone has only been described in juvenile mice of 3 weeks of age [367]. Thus, 

our multi-regional analysis in high-resolution MR imaging (reduced partial volume 

effects) reveal unusually reported demyelination already starting 2 weeks after 

cuprizone administration and signs of remyelination at week 4, when animals are 

still under cuprizone diet. The retrogenesis hypothesis might be considered to 

explain the early demyelination genu of the CC. This contends that late-myelinated 

axons during brain development, such as the ones in the genu are more susceptible 

to degenerate than those myelinated in later stages of life, such as the splenium. 

White matter degeneration in Alzheimer’s disease or during aging, for instance, is 

correlated with myelogenesis pattern in life [368], [369].   

Even though mice underwent demyelination in the genu-CC at an early stage of the 

experiment, the prompt regeneration conducted in the genu of the CC might be 

crucial for axonal protection, since remyelination protects axons from degeneration 

[27]. In a similar fashion in the “chronic cuprizone model”, where cuprizone is 

administered for 12 weeks, an unsuccessful attempt to remyelinate is conducted at 

the late stages (week 6) of acute demyelination [370], [371].  

The clear temporal patterns described by T2w imaging are also revealed by T1w 

imaging, but in a less pronounced fashion. Nevertheless, even though RD revealed 

demyelination in a delayed way in the regions analysed, failed to monitor 

remyelination during the following weeks. 

In general, our study demonstrates that the generally accepted paradigm of loss of 

myelin starting 3 weeks after cuprizone treatment and peaking at week 5, with 

posterior progressive remyelination until week 10 (if cuprizone is discontinued), is 

basically sustained for the med-CC, but when other regions of the brain are analyzed 
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at high spatial resolution, different patterns of evolution with time can be described. 

5.3. Chronic effects at 6 months of a demyelination insult  

Finally, the long-lasting effects of demyelination have been analyzed in this model 

on which remyelination takes place (at least partially) after the withdrawal of 

cuprizone from the diet. Although the extensive demyelination achieved at week 5 in 

the med-CC and CP is partially reversed during the following weeks following the 

withdrawal of cuprizone, the normalized T2w signal still exhibits a higher signal in 

the cuprizone treated mice compared to control at week 10 of the experiment. This 

might be explained by the formation of a thinner but already functional myelin 

membrane, characteristic of remyelination. In this way, Optical density values in LFB 

staining are smaller (T2w values higher) at week 10 compared with week 0, 

although axons seem to be functional at this point [35].  

Importantly, after 6 months of exposure to cuprizone, the difference in some of the 

measured MR parameters between cuprizone treated animals and controls is still 

evident. Normalized T2w and T1w signal intensities, RD, FA, MD and T1w/T2w ratio 

still show differences in the corpus callosum. Of note, as shown in Fig. 2.2, recovery 

after demyelinating insult does not seem to be completed at week 10, since most 

parameters show a reduced difference with the control group at month 6. Results 

indicate that despite the partial reversion of demyelination after a brief period of 

time (5 weeks on the whole life of an animal) long-lasting effects remain, even 6 

months later (which correspond to nearly ¼ of the lifespan of a mouse). In 

agreement with previous reports, Manrique and colleagues described locomotor 

abnormalities and axonal damage approximately 6 months after a cuprizone insult 

[195]. Thus, cuprizone might cause long-lasting and irreversible effects in the mouse 

brain, which might be indicative of a remyelination in which axons are recovered by 
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sheaths thinner than the originally present, before the insult, rather than axonal 

loss. In this sense treatments aimed to enhance the remyelination of affected axons 

may represent a new hope for the treatment of demyelinating diseases. 

6. Conclusions 

Our studies on the use of MRI to for the study of myelin content in the cuprizone 

mouse model have led us to important conclusions that will help us to develop more 

effective therapies against demyelinating diseases in the future. In particular: 1) An 

MRI protocol that includes the acquisition of high resolution T2-weighted, T1-

weighted and RD images is the most suitable one for the full characterization of 

multiple aspects of myelin content in the mouse cuprizone model at high or ultra-

high magnetic field. 2) The use of normalized T2w signal intensity or the 

combination of this parameter with RD and T1w are the most sensitive and specific 

way to follow myelin changes in the brain of the mouse, but other imaging 

parameters are important to discard T2w changes caused by other processes 

different than changes in myelin content. 3) Multi-regional analysis (multiple ROIs 

selection) is required in the mouse cuprizone model since up to 3 different temporal 

evolution patterns have been distinguished for the demyelination-remyelination 

processes in the cuprizone mouse model. This is an important issue when 

developing novel therapies against demyelination since alterations star as early as 1 

week after cuprizone, and continue to week 9, even when cuprizone is discontinued 

4 weeks earlier, depending on the region of the brain considered. And finally, 4) 

demyelination leaves long-lasting effects visible up to 6 months after the 

demyelinating insult, despite spontaneous remyelination is allowed to take place. 

Altogether, these results highlight the importance of developing effective 

remyelinating therapies for the treatment of demyelinating disorders. 
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7. Supplementary data 

Supplementary Table 2.1. Manually measured MRI and LFB-OD values used for linear regression 
(Fig. 2.4) analysis in the cuprizone mouse model. 

Regi
on 

Grou
p 

T2-W 
mean
±SD 

T1-w 
mean±

SD 

T1w/T2w  

mean±
SD 

SWI 
mean
±SD 

MTR 
mean±

SD 

FA 
mean±

SD 

RD 
mean±

SD 

LFB 
mean±

SD 

Med-
CC Control 

7182.5
4± 
479.83 

10124.75
± 
349.38 

1.54± 
0.08 

12544.1
1± 
342.73 

29.46± 
2.07 

0.60± 
0.06 

0.40± 
0.03 

0.24± 
0.05 

Week 5 
12135.
48± 
680.35 

12625.44
± 
431.32 

1.10± 
0.09 

16442.7
5± 
300.13 

22.33± 
0.57 

0.50± 
0.02 

0.51± 
0.03 

0.11± 
0.04 

Week 
10 

10170.
02± 
1157.3
9 

11235.96
± 
497.21 

1.19± 
0.16 

13984.0
6± 
229.01 

25.04± 
1.80 

0.49± 
0.05 

0.51± 
0.02 

0.21± 
0.02 

Lat-
CC Control 

7386.7
2± 
626.84 

9488.82± 
380.02 

1.41± 
0.06 

9953.71
± 
156.46 

26.91± 
1.88 

0.40± 
0.04 

0.44± 
0.02 

0.27± 
0.05 

Week 5 
10849.
72± 
623.58 

10768.73
± 
355.97 

1.05± 
0.11 

11592.4
3± 
462.29 

24.04± 
0.73 

0.33± 
0.02 

0.51± 
0.01 

0.16± 
0.06 

Week 
10 

8904.7
0± 
754.04 

9955.47± 
477.31 

1.21± 
0.18 

11322.3
0± 
298.33 

24.49± 
1.61 

0.38± 
0.02 

0.49± 
0.02 

0.19± 
0.04 

CP 
Control 

9406.9
0± 
252.54 

10571.57
± 
277.19 

1.19± 
0.04 

11633.5
5± 
368.15 

26.68± 
3.72 

0.26± 
0.04 

0.48± 
0.02 

0.21± 
0.04 

Week 5 
12024.
99± 
587.54 

11980.65
± 
525.95 

1.05± 
0.06 

14569.0
4± 
380.10 

23.53± 
1.46 

0.21± 
0.09 

0.54± 
0.04 

0.10± 
0.01 

Week 
10 

10250.
06± 
896.58 

10824.40
± 
1102.97 

1.12± 
0.12 

10922.3
2± 
1930.35 

24.39± 
0.61 

0.29± 
0.04 

0.52± 
0.03 

0.15± 
0.04 

C 
Control 

11241.
77± 
396.38 

12100.35
± 
239.37 

1.14± 
0.04 

12612.4
9± 
886.01 

27.45± 
1.53 

0.10± 
0.00 

0.58± 
0.00 

0.12± 
0.03 

Week 5 
11289.
23± 
216.44 

11560.86
± 
434.16 

1.07± 
0.08 

13122.2
8± 
231.32 

26.10± 
0.62 

0.12± 
0.02 

0.59± 
0.01 

0.08± 
0.01 

Week 
10 

11807.
16± 
299.09 

11944.67
± 
498.09 

1.06± 
0.09 

11896.3
5± 
958.81 

24.99± 
1.17 

0.09± 
0.00 

0.59± 
0.00 

0.09± 
0.02 

R2  0.84 0.72 0.67 0.23 0.24 0.47 0.76 - 



 
 
 
 
 
 
 
 

  

 

 

Chapter 3 

 

Imaging of myelin in mouse models of Alzheimer´s 

disease by multiparametric MRI  

 

 

 

 

 

A. Egimendia et al. (Submitted) 

 



 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 
 
 
 

Chapter 3 | 139 

 

1. Foreword 

In the previous chapter, we have described a robust protocol for the assessment of 

myelin-related pathologies in a non-invasive manner, by means of MRI. It is largely 

known that magnetic resonance imaging parameters might be affected by several 

factors or pathological processes, such as oedema, inflammation, myelin loss, cell 

necrosis, microbleedings, permeation of the blood-brain barrier and many others. 

In this chapter, we describe our studies to test the performance of the developed 

protocol in alternative animal models on which affectation of myelin might be only 

one of the potential events that concomitantly take place during the progression of 

the pathology. Conversely to the cuprizone model,  where myelin pathology is much 

profound than any other pathological process, such as inflammation or axon loss, in 

models such as the ones studied in this chapter (namely the mouse model of amyloid 

precursor protein deposition and a mouse model of tauopathy), profound white and 

grey matter pathology is expected, while myelin pathology is uncertain.  

Thus, on the one hand, we intend to see if the defined MRI parameters allow us to 

assess myelin content in a specific way and, on the other hand, to what extent this 

process takes place in Alzheimer disease. 
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1. Introduction 

Alzheimer’s disease is characterized by the deposition of β-amyloid protein (Aβ) and 

the formation of neurofibrillary tangles (NFT). Even though these are considered the 

hallmarks of AD’s and the grey matter has been typically regarded as main affected 

tissue, the role that myelin plays in the development of the disease is a matter of 

discussion. Post-mortem studies have revealed white matter damage in Alzheimer’s 

disease patients [372]. Myelin affectation is mainly mediated through the death of 

oligodendrocytes in this disease [109], [110], which are responsible for its 

production, maintenance and regeneration. Moreover, inflammation, Aβ 

accumulation and impaired neural activity can further damage white matter.  

Deciphering the contribution of Aβ plaques and NFT in the onset and progression of 

the disease, and determining the effect that they exert in myelin would shed light in 

the pathogenesis of the disease, potentially enabling novel therapeutic approaches. 

In this task, MRI represents an invaluable tool to provide non-invasive insight of 

brain damage, not only allowing the evaluation of brain atrophy but also the 

detection of altered tissue microstructure in grey and white matter areas. 

In this study two mouse models of Alzheimer’s disease have been used, a mouse 

model that develops age dependent Aβ deposition and another transgenic mouse 

model of tauopathy, with three main goals: 1) Conduct a multiparametric MRI study 

to evaluate grey and white matter damage in both models; 2) Assess the impact of 

Aβ plaques and tau protein in myelin through Luxol fast blue histology, and 3) 

Evaluate the sensitivity of the different MRI parameters to determine myelin content 

in both animal models, for which white matter damage is expected.  
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2.  Materials and methods 

2.1. Animals and experimental protocol 

Animal studies were conducted in our SPF facility under full accreditation from the 

Association for the Assessment and Accreditation of Laboratory Animal Care 

International (AAALAC). All animal procedures were approved by the Institutional 

animal care and use committee (IACUC), and local authorities (License PRO-AE-SS-

101, Diputación Foral de Gipuzkoa, Spain). 

Ad libitum access to food and water was provided to the animals under a controlled 

light environment (12 h light/dark). Seven B6SJL/J control mice and 5 B6SJLTg APP 

mice (APPSwFILon,PSEN1*M146L*L286V) (The Jackson Laboratory, Bar Harbor, 

Maine, USA) of 13 months of age have been used for the study. Additionally, 4 PS19 

transgenic mice (B6;C3-Tg(Prnp-MAPT*P301S)PS19Vle/J) and 7 B6C3F1/J control 

mice (The Jackson Laboratory, Bar Harbor, Maine, USA) have been also scanned. 

2.2. MRI 

MR imaging was performed on an 11.7 Tesla horizontal bore Biospec 117/16 

scanner (Bruker Biospin, Ettlingen, Germany) using a mouse brain surface coil for 

detection and a volumetric resonator for transmission. Anaesthesia was induced 

with 4% isofluorane and kept at 1.5-2% during the scanning session, carried by a 1-

1.5 l/min current of N2/O2 (70/30) gas mixture. After tuning and matching of the 

RF-coil and setup of the system (i.e., adjustment of pulse power, shims, and 

resonance frequency) 3 scout images were acquired in axial, coronal and sagittal 

directions using a T1-Flash sequence, and used as a reference for the rest of the 

imaging session. Afterwards, a multiparametric imaging protocol was acquired (Fig 

3.1.), including: 
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1) Susceptibility weighted imaging (SWI) was achieved with a gradient echo 

sequence with TR/TE=1200/6ms, FOV 12.75x12.75 mm2, matrix size 

170x170 (75 µm in-plane resolution), flip angle of 60º, Nav=3 averages and 

24 consecutive slices of 500 µm thickness (FOV in z axis = 12 mm). 

2) Magnetization transfer (MT) imaging was achieved acquiring 2 sets of 2 

images (with different MT pulse strengths each image) using a FLASH (fast 

low angle single shot) pulse sequence using TR/TE=400/3 ms, FOV 25.6 

mm x 25.6 mm, matrix size 256x256 (100µm in-plane resolution), a flip 

angle of 40º, Nav=6 averages and 2 sets of 12 consecutive slices of 500 µm 

thickness (covering the whole brain in a 2x6 mm field of view along z axis). 

MT contrast was generated by a pulse at irradiation offset of 4000 Hz, 

amplitude 7.8 µT and length 20ms (Msat) acquiring for reference a second 

image (M0) with identical parameters except for the irradiation offset of 

30000 Hz.  

3) T1-weighted images were acquired with a TurboRARE image sequence 

using a RARE factor of 2, TR/TEeff=1200/6.0 ms, a FOV 12.75 mm x 12.75 

mm and matrix size 170x170, giving an in-plane resolution of 75 µm, a flip 

angle 90º, Nav= 6 averages and 24 consecutive slices of 500 µm thickness 

(covering the whole brain in a 12 mm field of view along z axis). 

4)  T2-weighted images were achieved with a TurboRARE image sequence 

using a RARE factor of 8, TR/TEeff=4938/40 ms, a FOV 12.75 mm x 12.75 

mm and matrix size 170x170, giving an in-plane resolution of 75 µm, a flip 

angle 90º, Nav= 8 averages and 24 consecutive slices of 500 µm thickness 

(covering the whole brain in a 12 mm field of view along z axis). 

5) Diffusion-related parameters were obtained with a spin-echo-DTI pulse 
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sequence acquired using TR/TE=1410/20 ms, FOV 12.8 mm x 9.6 mm and 

matrix size 128x96 (in-plane resolution = 100µm), flip angle of 90º, b value 

of 1000 mm-2s (using δ= 4 ms and Δ= 11 ms), 40 gradient directions, 5 b0 

images and Nav=1 average. 24 consecutive slices of 500 µm thickness were 

acquired to cover the whole brain in a 12 mm field of view along z axis). 

In this way, total scanning time of the complete imaging protocol was 2h 24m (5’ 3 

scout images + 30’40’’ MTR + 10’12’’  SWI + 12’34’’ for T2w + 9’21’’ for T1w + 76’ for 

DTI), not considering the time required for the adjustments and animal positioning.  

2.1. Image analysis 

First, a set of preprocessing steps were performed for each image. Voxel dimension 

of all images was multiplied by 10 in order to improve the processing performance 

of FSL [FMRIB (Oxford Centre for Functional MRI of the Brain) Software Library; 

http://www.fmrib.ox.ac.uk/fsl, (Jenkinson et al., 2002; Smith, 2002)]. Additionally, 

Diffusion images were denoised using local PCA-based algorithm [351] 

implemented in Dipy library [352] for python. 

Next, all the images were placed in the same space as a down-sampled in-house 

template. High resolution T2w images were used for achieving optimal brain 

extraction and registration to the template. T2-weighted images were skull stripped 

and bias corrected using FSL. Afterwards, registration to the in-house template was 

performed. Masks and transformation matrixes obtained for the T2w images were 

subsequently applied to each of the MR image modalities. Simultaneously, the 

publicly available AMBMC (Australian Mouse Brain Mapping Consortium, 

http://www.imaging.org.au/AMBMC/) mouse atlas was registered to the template 

for automatic regions of interest (ROIs) selection on images. 
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Figure 3.1. Multiparametric MR imaging of APP and PS19 mice and their respective controls. 
T2-weighted imaging (T2w), T1-weighted imaging (T1), T1w/T2w ratio, susceptibility 
weighted imaging (SWI), magnetization transfer ratio (MTR), fractional anisotropy (FA), axial 
diffusivity (AD), mean diffusivity (MD) and radial diffusivity (RD). 
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Once images were placed in the same space, T1-weighted and T2-weighted images 

were divided (T1w/T2w ratio) and Magnetization transfer ratio (MTR) was 

calculated using the formula MTR=100*(M0-Msat)/M0, where M0 is the signal 

intensity of the non-saturated image and Msat is the signal intensity of the off-

resonance RF irradiation image.  

Moreover, pixel signal intensities of T1-weighted, T2-weighted and SWI images 

were normalized for each image (taking brain mean value= 10000) in order to 

enable the inter-individual comparison of images. 

A series of regions of interest (ROIs) were selected and extracted from the 

anatomical atlas, covering both gray matter and white matter regions including: the 

cerebellar peduncles (CP), the hippocampus (Hc), the thalamus (Th), the caudate 

putamen (CPu), the hypothalamus (Hyth) and the cortex (C), including 

somatosensory and auditory cortex. The CC was separated in the medial corpus 

callosum (med-CC) and the lateral corpus callosum (lat-CC), for image analysis.  

Additionally, regional brain volumes (V) of grey matter areas were quantified by 

registration of the images to the AMBMC mouse brain atlas with 12 degrees of 

freedom. 

2.2. Histology 

After the MRI scanning session mice were sacrificed, brains were immediately 

removed and frozen in dry ice. Then, brains were stored at -80°C until processed. 

Twenty-five micrometre thick sections were cut on the microtome and stored 

mounted in glass at -20°C until stained. Samples were stained with Luxol fast blue 

(LFB) (Sigma, S3382) and analyzed on a cell observer microscope (Axio Observer, 

Carl Zeiss, Germany). 
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ImageJ software  [353] was used for image processing.  Then colour values were 

converted to optical density (OD) for myelin quantification. Evaluation of myelin 

content was performed on the genu of the corpus callosum (genu-CC), the medial 

corpus callosum (med-CC), the thalamus (Th), the striatum (CPu), the hippocampus 

(Hc), the motor cortex (MC) and a somatosensory cortex region (C).  

2.3. Statistical analysis 

Graphpad/Prism software was used for statistical analyses. Normality assessment 

was performed with quantile-quantile (Q-Q) plot [354]. For normally distributed 

data the statistical significance of the difference between groups was determined by 

a two-way analysis of variance (ANOVA). Afterwards, unpaired t-test was applied. If 

the sample did not follow normal distribution a Mann-Whitney test was applied. 

Statistical significances were set at p>0.05 (*). 

3. Results 

3.1. APP mouse model 

Regional alterations respect to controls of different imaging parameters were 

observed at different ROIs of the brain of APP mice, (Fig. 3.2 and Suppl. Table 3.1). 

Most alterations were observed in water diffusion related parameters, entailing 

increased radial diffusivity (RD) values and reduced fractional anisotropy (FA) 

values, in several regions. Conversely, magnetization transfer ratios (MTR) and axial 

diffusivity (AD) did not reveal any significant difference between groups.  

APP transgenic mice show abnormal values respect to controls in highly myelinated 

regions, like med-CC (ΔmSWI=5.5%, ΔmFA=-21.4%, ΔmRD=13%, p<0.05), the lat-CC 

(ΔmFA=-20.3%, p<0.05) and the CP (ΔmFA=-29%, ΔmRD=12.1%, ΔmMD=5.8%, 
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p<0.05). Among the subcortical regions, the Th (ΔmT2=-3.0%, ΔmT1=-2.1%, 

ΔmSWI=-4.1%, ΔmRD=3.5%, p<0.05), the CPu (ΔmT1w/T2wratio = -2.2, ΔmFA = -

15.1%, ΔmMD=2.8%, ΔmRD=4.3%, p<0.05) and the Hyth (ΔmT2=-3.3%, p<0.05) 

exhibited alterations. 

  

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.2. Mean values of measured MRI parameters at different regions of interest in APP 
(grey bars) and control (black bars) mice. The medial corpus callosum (med-CC), lateral corpus 
callosum (lat-CC), cerebellar peduncles (CP), C (cortex), caudate putamen (CPu), hippocampus 
(HC), hypothalamus (Hyth), motor cortex (MC) and thalamus (Th) have been analyzed. * 
Represents p<0.05 
 

Cortical areas, in which Aβ plaques are presumably accumulated, also exhibit 

different values compared to controls, more precisely in the MC (ΔmT2=0.8%, 
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ΔmFA=-15%, p<0.05), C (ΔmFA=-10.4%,, p<0.05) and HC (ΔmT1=-2.2%, ΔmSWI=-

5.1%, ΔmRD=4.6  p<0.05) regions. Moreover, taking the whole brain as an unique 

region of interest, the Aβ deposition transgenic mouse model showed 15.88% 

reduced mean FA values (Control = 0.23, APP-mouse = 0.19; p<0.05).  

All in all, four different findings have been observed in grey matter, in this study: 1) 

Susceptibility weighted imaging, T1-weighted imaging and RD revealed abnormal 

values in the thalamus (also reduced T2w signal) and hippocampus; 2) FA revealed 

decreased values in the cortex (C and MC) in transgenic mice; 3) A rise in MD and RD 

and a decrease in FA, together with a decrease in the T1w/T2w ratio is observed in 

the CPu; 4) T2w imaging shows hypointensities in the hypothalamus. When it comes 

to highly myelinated white matter regions (CC and CP), the differences are mainly 

exhibited by DTI parameters, together with SWI. 

Optical densities measured on Luxol fast blue staining images did not reveal any 

difference between the transgenic and control mice for the ROIs analyzed, as shown 

(Fig. 3.3). Numerical values are reported in supplementary data (Suppl. Table 3.2). 

 

 

 

 

 

 

Figure 3.3. Luxol fast blue (LFB) staining of APP mouse model. A) LFB staining of mouse 
control mice (left) and APP transgenic mice (right) B) Optical density measures of LFB at the 
genu of the corpus callosum (genu-CC), medial corpus  callosum (med-CC), cortex (C), motor 
cortex (MC), caudate putamen (CPu), Hippocampus (Hc) and thalamus (Th). 
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Volumetric changes in different ROIs of the brain were determined (Fig 3.4.). The 

analysis of this parameter revealed significantly reduced normalized volumes 

(respect to the whole brain volume) for APP mice respect to controls at the level of; 

C (VAPP = 13.56±0.45 %, VControl = 14.05±0.2 %, p<0.05), MC (VAPP = 7.67±0.15%, 

VControl = 8.10±0.24%, p<0.05), the HC (VAPP = 5.87±0.11%, VControl= 6.04±0.11%, 

p<0.05) and the Th (VAPP= 2.79±0.07 VControl = 2.94±0.07, p<0.05). Whole brain 

volumes of the transgenic model were not significantly different from controls at the 

level of p<0.05 (VControl = 513 ± 5.54 mm3; VAPP = 489 ± 11.19 mm3). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.4. Volume measurements of different regions of interest in APP and control mice. A) 
Regions of interest selected for analysis: Cortex (C), motor cortex (MC), thalamus (Th), 
hypothalamus (Hyth) and caudate putamen (Cpu). B) Mean values showing differences in the 
volume of the ROIs normalized for each animal as  (%) of the total brain volume * Represents 
p<0.05. 
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3.2. Mouse model of tauopathy 

In the PS19 model of tauopathy most significant differences with respect to controls 

were observed for water diffusion related parameters and SWI signal intensities 

(Fig. 3.5, Suppl. Fig. 3.3). Mean values of the studied parameters with their standard 

deviation are reported in Suppl. Table S3.3. Parameters such as MTR, T1w/T2w 

ratio and T1-weighted signal intensity did not reveal any difference for any of the 

analyzed ROIs. Simultaneously, no significant differences were observed for any of 

the analyzed parameters for highly myelinated regions (i.e. med-CC, lat-CC, CP).  

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3.5. Means of MRI parameters at different ROIs for PS19 mice (grey bars) vs. controls 
(black bars). Selected ROIs: corpus callosum (med-CC), lateral corpus callosum (lat-CC), 
cerebellar peduncles (CP), C (cortex), caudate putamen (CPu), hippocampus (HC), 
hypothalamus (Hyth), motor cortex (MC) and thalamus (Th). * Represents p<0.05. 
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However, in regions where the presence of NFT was expected (i.e. HC, Th, C and MC), 

differences in MR parameters between PS19 mice and controls have been observed. 

FA was the only image parameter revealing differences between PS19 and control 

mice in the C (ΔmFA=8.4%). Similarly, SWI showed abnormally increased signal in 

the HC (ΔmSWI=3.8%), as well as a decreased signal in the Th (ΔmSWI=-4.8%) of 

PS19 mice,  respect to controls. Differences were observed also for different 

parameters at the level of MC (ΔmT2=-5%, ΔmFA=20.5%, ΔmAD=10.9%, 

ΔmMD=8.6%, ΔmRD=7.2%), CPu (ΔmSWI=-4.5%, ΔmFA=13.9%, ΔmAD=4.3%, 

ΔmMD=2.9%,) and Hyth (ΔmSWI=8.6%, ΔmFA=-9.8%, ΔmRD=3.3%,). Taking the 

whole brain as a unique region of interest, PS19 mice exhibited 5.76% higher values 

of FA respect to the controls (mFAcontrol = 0.215, FAPS19 = 0.228; p<0.05).  

LFB staining did not reveal any significant difference in any region of interest 

between the PS19 mouse model and control mice (Fig. 3.6). Numerical values are 

reported in supplementary data (Suppl. Table 3.2). 

 

 

 

 

 

 

 

Figure 3.6. Luxol fast blue (LFB) staining of PS19 mouse model of tauopathy. A) LFB staining of 
control mice (left) and PS19 transgenic mice (right) B) Optical density measures of LFB at the 
genu of the corpus callosum (genu-CC), medial corpus  callosum (med-CC), cortex (C), motor 
cortex (MC), caudate putamen (CPu) and thalamus (Th). 
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In terms of differences in volume, no regional differences have been observed 

between PS19 mice and controls at the level of Th, Hyth, C, MC and HC (Fig 3.7).  

Moreover, whole brain volume measurements have been performed (Vcontrol = 516 ± 

27.75 mm3; VPS19 = 514 ± 10.09 mm3), resulting in no significant differences between 

groups. 

 

 

 

 

 

 

 

 

 

Figure 3.7. Volume measurements of different regions of interest measured in PS19 and control 
mice. A) ROIs selected for analysis: Cortex (C), motor cortex (MC), thalamus (Th), hypothalamus 
(Hyth) and caudate putamen (Cpu). B) Mean values showing differences in volume of the ROIs 
normalized for each animal as  (%) of the  total brain volume * Represents p<0.05 
 

4. Discussion  

4.1. APP mouse model 

Due to the complexity of Alzheimer’s disease, in which presence of Aβ plaques 

precede the accumulation of NFT, studies conducted before the onset of symptoms 
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provide a deep insight in the role that the Aβ might play in the progression of the 

disease and the occurrence of neurological deficits. However, the role that Aβ 

plaques have in the imaging and pathogenesis of Alzheimer’s disease is inconclusive 

in the current state of the art [373].  

The different scenario unfolded by the various parameters studied in this work 

might reflect the complexity of the model and the sensitivity of MRI to detect 

different pathological states, such as white matter damage. Signal arising from SWI 

might be a representative example of this situation. While SWI reveals hyperintense 

signal in a highly myelinated area of APP mice (the corpus callosum, CC), it exhibits 

hypointense signal in the Th and the HC, probably revealing a different pathological 

condition.  

Multiparametric MRI has revealed different patterns in this study. Susceptibility 

weighted imaging, T1-weighted imaging and RD revealed abnormal values in the 

thalamus and hippocampus. Furthermore, FA revealed decreased values in the 

cortex in transgenic mice. In transgenic models of APP deposition, extensive 

accumulation of plaques has been reported in the thalamus, hippocampus and 

cortical regions [374]. Even though direct visualization of Aβ plaques calls for ultra-

high resolution and large scanning times [374], [375], the presence of senile plaques 

might lie behind the abnormal values exhibited in  T1w, RD and SWI in the Th and 

HC, or the decreased values of FA  in C and MC. Of note, FA has been found to be the 

only parameter showing a difference in the C and MC, while no difference has been 

exhibited in the HC or Th. Thus, microstructural changes caused by Aβ deposition 

might be different in these regions. 

Simultaneously, the CPu shows substantial alterations in diffusivity, with a rise in 

MD and RD and a decrease in FA, together with a decrease in the T1w/T2w ratio. 
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Concurrently, in a studied conducted by Müller and colleagues, decreased FA 

revealed abnormalities in this region [376]. The setting showed by the CPu might be 

similar to the one shown in highly myelinated areas, such as the CP or the CC. The 

reason behind such an altered diffusivity might be therefore related to axon atrophy, 

which is extensive in Alzheimer’s disease [103]. Finally, T2w imaging has shown 

abnormalities in the Hyth and Th. Certainly, it is difficult to ascribe a particular 

pathological process to these abnormalities. More precisely, the Hyth has shown to 

be particularly metabolically altered in the APP transgenic mouse model [377], 

[378]. Additionally, a reduced amount of neurons and dendritic arborization have 

been described in Alzheimer’s disease patients, even though, the number of plaques 

or tauopathy was minimal compared to other regions [379].  

Thus, we have observed that multiparametric MRI reveals deep damage in the grey 

matter. The amyloid hypothesis bears that Aβ plaques cause neuronal death, leading 

to brain atrophy [102]. Deciphering the relationship between Aβ accumulation and 

brain atrophy is crucial for the understanding the pathological mechanism of the 

disease. Hippocampal atrophy is considered one of the most revealing features of AD 

patients [380], [381] as a key diagnostic characteristic in the early stages of the 

disease [382]. At this stage, not only volume changes but also abnormal diffusivity is 

detected by MRI in the HC [383]. Interestingly, multimodal studies performed in 

human Alzheimer’s disease patients combining MRI and Positron emission 

tomography (PET) of Aβ deposition have demonstrated their correlation with 

atrophy in the brain [384], [385]. Additionally, growing evidence supports that 

mouse models expressing APP develop hippocampal atrophy [386]–[388]. 

According to this findings, we have observed brain atrophy in the HC, together with 

atrophy in the Th, C and MC which are some of the main atrophied regions of the 

brain in Alzheimer’s disease patients [389]. Nevertheless, no significant difference 
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has been found for the total brain volume between APP mice and controls. 

Even though Alzheimer’s disease has been widely recognized as a grey matter 

disorder, in this study the implication of Aβ plaques in white matter damage and 

myelin loss has also been studied. Post-mortem studies have shown an elevated 

concentration of degraded myelin basic protein complex in human brains, as well as 

deposition of myelin basic protein (MBP) at the margins of Aβ plaques [106]. 

Certainly, growing evidence supports that white matter is extensively damaged in 

Alzheimer’s disease [390]. In a study conducted in healthy adults, a decrease of FA in 

white matter tracts along with an increase of MD and RD was ascribed to increase on 

Aβ levels, resulting in loss of cognition [391]. Concurrently,  Song et colleagues [279] 

described the same pattern in a transgenic mouse model of Aβ deposition at 15 

months of age. In agreement with these findings, we showed that Aβ deposition 

leads to a reduction of FA values in the CC and CP together with an increase in RD 

and MD (MD only significantly in the CP). Precisely, the loss of integrity of myelin or 

demyelination has been attributed to a stable AD and an increased RD in white 

matter [270], [358], as demonstrated in the cuprizone mouse model of 

demyelination  [267], [268]. Conversely, FA is considered highly sensitive to various 

pathological conditions and a nonspecific marker of microstructural damage and 

neuropathology [365]. A correlation of FA with axonal density has been found in 

post-mortem studies conducted in patients of Alzheimer’s disease [392]. Of note, we 

have observed that the Aβ deposition transgenic model presents, on average, a 

15.88% lower FA value for the whole brain, respect to controls.  

Although abnormalities in white matter are evident in the Aβ transgenic mouse 

model, the underlying reason for this condition has not been deciphered so far. In 

this study, we have performed Luxol fast blue staining for the quantification of 

myelin content in this mouse model. LFB is considered a histological gold standard 
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for myelin [218]. Optical density values of LFB stained brain sections have revealed 

no significant differences for any region of interest analyzed between APP mice and 

controls. Thus, white matter damage might include damage beyond myelin 

pathology, such as axonal loss, without changes in net myelin content, which might 

be aggravated by the age of the mice (13 months). In fact, electron microscopy has 

revealed axonal damage in the APP/PS1 mouse model [393], as shown in 

Alzheimer’s disease patients [394]. This pathological process might influence 

diffusion related MRI parameters such as FA, MD or RD. 

Certainly, we have previously reported (Chapter 2) that radial diffusivity exhibits a 

good correlation with myelin pathology.  Here we show that RD is also sensitive to 

pathological hallmarks not related to myelin content, as it exhibits significant 

difference between APP mice and controls in white matter regions such as the 

corpus callosum or the cerebellar peduncles, were myelin loss has not been detected 

(Fig 3.2.). Although RD has demonstrated its capacity to specifically monitor myelin 

content in several preclinical models [268], [270], [271], it might also be sensitive to 

extra-axonal water or inflammation [358], [362], [395], [396].   

Conversely, in line with Luxol fast blue staining, T2-weighted imaging and T1-

weighted imaging, which were validated in Chapter 2 as specific and sensitive 

markers of myelin, did not show any significant difference in major tracts of white 

matter (i.e. med-CC, lat-CC and CP) in the present study. Precisely, as 

aforementioned, diffusion-weighted imaging has revealed abnormalities in APP mice 

in these regions. These results might indicate that T2w and T1w imaging might be 

not sensitive to non myelin related pathological events happening at white matter 

tracts of the brain of our APP mouse model.  

Thus, in a model where extensive degeneration was expected, and actually revealed 
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by multiparametric MRI, T2w and T1w imaging has shown robustness and low 

sensitivity to processes unrelated to myelin, while RD has been highly sensitive and 

efficient to detect further microstructural abnormalities. These results do not imply 

that other pathological events present in other models may also affect T1 and T2 

imaging, only that those processes present in this model do not affect them.  

Results from previous and current study reinforce the importance of the 

performance of multiparametric MRI studies, in order to avoid misleading 

conclusions and to get a deeper insight on tissue microstructure in different models 

of disease on which myelin plays either a minor or a major role. 

4.2. PS19 mouse model of tauopathy 

The advent of aggregates of hyperphosphorylated tau forming neurofibrillary 

tangles (NFTs) triggers the cognitive impairment in Alzheimer’s disease. It is known 

that the appearance of Aβ plaques precedes the formation of NFT. Hence, it is 

challenging to evaluate the effect of the later in an isolated manner in the course of 

the disease in humans. In this context, transgenic mouse models of tauopathy have 

shed light into the role that NFTs might be playing, irrespective of APP 

accumulation. In this sense, it is important to highlight the difference between 

alternative murine models of tauopathy commonly used in literature.   

The rTg4510 and PS19 mouse models are the most commonly used transgenic 

models of tauopathy. PS19 mouse model presents a circa 5-fold higher expression of 

tau transgene compared to control mice, while the rTg4510 express circa 13-fold 

levels.  Additionally, the onset of tauopathy is exhibited at 6 months or 2-3 months 

in PS19 and rTg4510 models, respectively [397].  

In this study, we have evaluated the behaviour of MRI parameters in PS19 mice. To 
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our knowledge, no DTI studies have been performed in this model so far, where 

hyperphosphorylated tau aggregation can be observed mainly in the hippocampus 

and cortex, and in a lesser extent in the thalamus and striatum [398]–[400].  

DTI has shown to be the most sensitive and most widely used technique for the 

characterization of Alzheimer’s disease mouse models.  Most MRI studies in 

Alzheimer’s disease models of tauopathy have been performed in the rTg4510 

mouse. These studies agreed on the increase of MD and FA in grey matter regions 

[278], [401], [402]. In agreement with these authors, we have appreciated an 

increase of MD (in the CPu and MC) and of FA (C, MC and CPu) in grey matter 

regions. However, we have found that at the level of the Hyth FA values decrease, 

while RD and SWI values are increased, offering a different pattern to the one 

described by the previous parameters (MD and FA). 

In line with studies conducted in Alzheimer’s disease patients, the progression of the 

disease leads to higher MD values in grey matter regions [403]. Conversely, 

increased FA values in both PS19 and rTg4510 models contradict the diffusivity 

pattern observed in human patients, where FA is decreased in most regions [403]. 

The reduced values observed in the human brain might lie in the presence of Aβ 

plaques and damage triggered by them in Alzheimer’s disease patients. This 

hypothesis is supported by the lower values of FA that we and others have observed 

in the mouse model of amyloid deposition.  Additionally, AD increased values are 

found in the CPu and MC and increased values of RD in the MC in PS19 mice 

compared to controls. Thus, the presence of NFT might lead to increased 

directionality (higher FA) and diffusivity (higher MD).  

It is should be born in mind that differences observed in diffusivity in mouse models 

of tauopathy have been observed in an advanced stage of the disease.  In the study 
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conducted by Holmes and colleagues in the rTg4510 mouse model [402] they were 

only able to observe differences between the rTg4510 and the control groups at 7.5 

months of age. Due to this fact they concluded that DTI parameters are not sensitive 

enough to detect abnormalities at an early stage of the pathology. This is of great 

interest when considering DTI as a potential marker for tauopathy.  

Unlike cortical regions and CPu, the Th and the HC exhibit a different behaviour. 

These regions, in which accumulation of tau fibrils is expected, show no diffusion 

abnormalities for transgenic mice.  Interestingly, while decreased SWI signal is 

observed in the Th (also observed for T2w signal) and CPu in PS19 mice, increased 

values are observed in the HC and Hyth. Interestingly, in the rTg4510 mouse model 

of tauopathy abnormal magnetic susceptibility was detected in the Th, CPu and HC, 

where NFT aggregation was observed (no results are exhibited Hyth-wise) [404]. 

Nevertheless, no correlation was observed between NFT burden and measured SWI 

signal. Although NFT may contribute to T2* effect, synaptic and neuronal densities 

or myelin content can also contribute to T2* [405]. Extent of 

neurodegeneration[406] and loss of microstructure, along with different NFT 

burden observed in different brain areas, might exert contrary effects in SWI signal. 

Regarding white matter damage, DTI metrics show a different pattern in the PS19 

respect to that reported for rTg4510 mouse models. The increased MD, RD and 

reduced FA values widely described in the rTg4510 model is in the line with the 

studies conducted in Alzheimer’s disease patients [278], [401], [402]. Nevertheless, 

these differences have only been observed in an advanced phase of the disease, after 

month 7.5 [401], [402], and not in the early stages. Of note, no NFT has been 

observed in the CC at 8.5 months [278]. Considering the increased amount of tau 

overexpression in the rTg4510 (~13-fold) mouse model compared to the PS19 (~5-

fold), absence of extensive white matter damage in this model might be reasonable. 
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These findings are supported by LFB staining, where no significant difference in 

myelin content were observed for any of the analyzed regions of interest.  

Concerning volumetric measurements for the evaluation of potential brain atrophy, 

no differences have been observed between PS19 and control mice in any of the 

studied regions (C, MC, TH, CPu, Hyth). contrarily to previous studies that report 

volume loss in the HC [398] and neocortex [400] in this model. The use of more 

sensitive and accurate techniques for volume assessment might allow the 

identification of subtle differences, not detectable by atlas coregistration. 

Nevertheless, tauopathy has not shown to be a major factor contributing to brain 

volume loss compared to control mice at this age. 

4.3. General considerations about Alzheimer’s Disease models 

Alzheimer’s disease transgenic mouse models of β-amyloid deposition or tauopathy 

have provided knowledge to understand the physiopathology of the disease. 

However, in humans, both processes are concomitant, triggering extensive damage.  

In this study, we have studied the effect of APP deposition and NFT formation in a 

separate manner, in terms of myelin affectation, and we have evaluated the 

sensitivity of different MRI parameters to describe pathological hallmarks related 

with their presence. Main features of each model are summarized in Table 3.1. 

 

Table 3.1. Summary of the alterations observed in animal models of Alzheimer’s disease. 

Model 
White 
matter 

alterations 
Demyelination 

Grey 
matter 

alterations 
Atrophy 

APP-Aβ plaques + - + + 
PS19- tauopathy - - + - 

  + Represents existing phenomenon; - Represents absent phenomenon 
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Most differences are revealed by diffusion tensor imaging. In both models, MD and 

RD values are increased in some regions of the brain. However, we have observed 

that both animal models exhibit opposite behaviour in some situations. FA values in 

specific regions of grey matter, such as the C, MC and CPu are higher in the PS19 

mouse model and lower in the APP mouse model. Interestingly, the mean FA value 

of the whole brain is 5.76% higher in PS19 mice, respect to their controls while it is 

15.88% lower in APP mouse model, respect to their controls (Fig 3.8.). 

 

 

 

 

 

 

 

Figure 3.8. Mean fractional anisotropy values (FA) in the whole brain for A) APP mouse model 
and B) PS19 tauopathy mouse model.  

 

At the same time, a similar phenomenon takes place in the HC, where PS19 mice 

exhibit higher values of normalized SWI image than their controls, while the APP 

mouse present decreased values in transgenic mice compared to controls. Hence, 

misleading interpretations might be taken when comparing transgenic mouse 

models with the human disease, where APP and NFT effects may compensate each 

other yielding no net changes. A more realistic view of the Alzheimer’s disease may 

be provided by the triple-transgenic Alzheimer’s disease mice model (3xTg mouse 
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model), where both NFT and Aβ plaques coexist. In this model, it has been described 

that FA and AD values were lower in the HC at 12-14 months of age [407]. 

Nevertheless, only increased radial diffusivity was exhibited in the APP mouse 

model in our study in this region.   

Regarding myelin damage, our study shows that both the APP and the tauopathy 

mouse models exhibit no apparent myelin loss, judging by LFB staining of brain 

sections. While deposition of Aβ plaques seems to cause damage in the white matter, 

as revealed by diffusion MRI, tau protein fibrils do apparently lead to no significant 

white matter damage in the PS19 model. Conversely, as stated previously, tau 

protein aggregates result in white matter damage in the rTg4510d mouse model. 

The accumulation of NFT and Aβ plaques might provoke further damage that finally 

could cause extensive loss of myelin. Of note, in the triple-transgenic Alzheimer’s 

disease mice (3xTg mouse model), damage of white matter is still controversial, and 

a matter of discussion [108], [408].  

Finally, analysis of brain volumes has been performed, since atrophy is a particular 

feature of Alzheimer’s disease patients [409]. We have observed that deposition of 

Aβ plaques results in atrophy of several regions of the brain. Conversely, the PS19 

mouse model of tauopathy exhibits no regional atrophies, compared to controls.  

Interestingly, brain volume loss has been observed together with white matter 

extensive damage in APP mouse model. The correlation between both pathological 

features, however, is still inconclusive. 

In this study, the previously described (chapter 2) correlation between T2-weighted 

and T1-weighted signal intensity and LFB-measured myelin content, found for the 

cuprizone mouse model, seems to hold well for the 2 studied models of Alzheimer’s 

disease features. A different situation was observed for RD, which showed a high 
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correlation with myelin content in the cuprizone model but seems to be sensitive to 

non myelin related pathological events taking place in the white matter of APP mice. 

Therefore, a setting in which the presence of nonsignificant differences on T2w 

signal intensity values are shown together with decreased RD values, in a specific 

region of the brain, might reveal further non-myelin related pathological processes 

going on (e.g. axonal loss). Thus, the importance of performing multiparametric MR 

imaging to study brain-related pathologies is highlighted by these findings. 

5. Conclusions 

In this study the MRI hallmarks of two mouse models of Alzheimer’s disease have 

been presented. We have observed through Luxol fast blue staining that myelin loss 

is not a relevant feature of the studied mouse models of Aβ deposition and of the 

studied mouse model of tauopathy (PS19). Nevertheless, multiparametric MRI has 

revealed extensive white matter alterations and regional atrophies triggered by Aβ 

deposition, while no white matter or atrophy has been observed in the mouse model 

of tauopathy. Multiparametric MRI has revealed alteration of different imaging 

parameters for several grey matter regions, probably as a consequence of the 

presence of NFT or senile plaques, or as a result of the damage triggered by them.  
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6. Supplementary data 

Supplementary Table 3.1. Mean (m) values ± Standard deviation (SD) for the different 
parameters studied at different regions of the brain. (All values are presented as m±SD, 
shadowed values indicate significant differences with p<0.05). 
 

Region 
103 T2 

(a.u.) 

103 T1 

(a.u.) 

T1w/T2w 

(a.u.) 

103 SWI 

(a.u.) 

MTR 

(%) 
FA 

10.-3 AD 

(mm2s-1) 

10-3 MD 

(mm2s-1) 

10-3 RD 

(mm2s-1) 

med-CC 
C 9.2±0.5 10.7±0.3 1.53±0.06 12.5±0.4 28.4±1.7 0.39±0.04 1.00±0.07 0.69±0.04 0.53±0.04 

β 8.8±0.4 10.5±0.2 1.62±0.06 11.9±0.4 28.8±1.4 0.50±0.02 1.08±0.04 0.67±0.02 0.47±0.02 

Lat-CC 
C 9.8±0.2 10.8±0.2 1.41±0.05 12.2±0.3 27.9±1.6 0.29±0.01 0.89±0.06 0.68±0.04 0.58±0.04 

β 10.1±0.4 10.6±0.2 1.40±0.04 12.1±0.3 27.5±1.2 0.36±0.02 0.95±0.04 0.68±0.03 0.55±0.03 

CP 
C 8.8±0.2 9.89±0.3 1.37±0.07 10.3±0.9 28.0±1.1 0.20±0.02 0.71±0.02 0.58±0.01 0.52±0.01 

β 8.9±0.2 9.68±0.3 1.30±0.07 10.2±1.4 28.3±1.7 0.28±0.03 0.73±0.04 0.55±0.02 0.46±0.01 

C 
C 11.8±0.1 11.6±0.1 1.20±0.03 11.8±0.3 27.0±1.4 0.13±0.01 0.67±0.01 0.60±0.01 0.56±0.01 

β 11.8±0.1 11.7±0.1 1.20±0.03 11.5±0.5 26.4±1.5 0.15±0.01 0.68±0.01 0.60±0.01 0.56±0.01 

CPu 
C 10.3±0.3 10.7±0.2 1.24±0.03 12.4±0.4 26.7±2.5 0.12±0.01 0.68±0.01 0.60±0.01 0.56±0.01 

β 10.0±0.2 10.6±0.1 1.27±0.05 12.1±0.4 26.1±2.0 0.14±0.01 0.68±0.01 0.59±0.01 0.54±0.01 

HC 
C 11.5±0.2 11.0±0.2 1.15±0.04 12.7±0.3 26.6±1.9 0.16±0.01 0.75±0.03 0.65±0.03 0.59±0.02 

β 11.7±0.1 11.2±0.1 1.16±0.03 13.4±0.2 26.1±1.8 0.17±0.01 0.74±0.02 0.63±0.02 0.57±0.01 

Hyth 
C 9.4±0.3 9.35±0.1 1.22±0.03 10.4±0.3 26.1±2.8 0.25±0.03 0.78±0.03 0.61±0.02 0.52±0.03 

β 9.7±0.1 9.61±0.2 1.21±0.03 0.98±0.8 25.4±2.0 0.27±0.03 0.79±0.04 0.61±0.01 0.52±0.01 

MC 
C 11.1±0.3 10.4±0.2 1.16±0.04 10.8±0.5 25.6±1.6 0.13±0.00 0.63±0.01 0.55±0.01 0.51±0.01 

β 11.0±0.2 10.2±0.2 1.14±0.02 10.4±0.8 26.7±2.4 0.15±0.01 0.65±0.02 0.56±0.02 0.51±0.02 

Th C 9.27±0.2 10.8±0.1 1.40±0.11 12.8±0.3 28.0±2.3 0.22±0.02 0.76±0.03 0.61±0.01 0.54±0.00 

 β 9.55±0.1 11.0±0.1 1.38±0.05 13.3±0.2 27.7±2.0 0.23±0.02 0.74±0.03 0.60±0.02 0.52±0.02 

 



 
 
 
 
 
 
 
 

Chapter 3 | 165 

 

Supplementary Table 3.2. Luxol fast blue optical density (OD) mean values ± Standard 
deviation (SD) for different regions of interest in the APP mouse model and the PS19 mouse 
model. (all values are presented as m±SD). 
 

 

 

 

 

 

Region Group 
APP LFB OD 

(a.u.) 
PS19 LFB OD 

(a.u) 

Genu-CC 
Control 0.124±0.03 0.138±0.01 

Alzheimer’s 0.145±0.02 0.141±0.01 

Med-CC 
Control 0.125±0.03 0.157±0.01 

Alzheimer’s 0.135±0.02 0.143±0.01 

C 
Control 0.093±0.02 0.108±0.01 

Alzheimer’s 0.103±0.01 0.108±0.01 

MC 
Control 0.091±0.01 0.120±0.01 

Alzheimer’s 0.102±0.02 0.113±0.01 

CPu 
Control 0.098±0.02 0.111±0.01 

Alzheimer’s 0.108±0.01 0.111±0.01 

Th 
Control 0.096±0.02 0.129±0.01 

Alzheimer’s 0.113±0.02 0.113±0.01 

Hc 
Control 0.106±0.02 0.117±0.01 

Alzheimer’s 0.095±0.02 0.11±0.01 
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Supplementary Table 3.3. Mean (m) values ± Standard deviation (SD) for the different 

parameters studied at different regions of the brain in the PS19 mouse. (All values are 

presented as m±SD, shadowed values indicate significant differences with p<0.05). 

Region 
103 T2 
(a.u.) 

103 T1 
(a.u.) 

T1w/T2
w (a.u.) 

103 SWI 
(a.u.) 

MTR 
(%) 

FA 
10-3 AD 

(mm2s-1) 
10-3 MD 

(mm2s-1) 
10-3 RD 

(mm2s-1) 

med-CC 
C 

8.59±0.3
2 

10.5±0.1
1 

1.69±0.09 11.7±0.5 30.2±1.6 
0.52±0.0

2 
1.08±0.0

2 
0.66±0.0

2 
0.45±0.0

2 

β 
8.57±0.5

0 
10.5±0.2

1 
1.66±0.10 11.2±0.4 29.2±0.8 

0.50±0.0
2 

1.08±0.0
6 

0.68±0.0
4 

0.48±0.0
3 

Lat-CC 
C 

7.42±0.1
5 

10.0±0.1
3 

1.77±0.06 10.4±0.8 30.1±1.8 
0.42±0.0

2 
0.88±0.0

2 
0.59±0.0

1 
0.44±0.0

1 

β 
7.50±0.1

8 
10.1±0.1

4 
1.75±0.08 11.0±0.2 29.5±0.6 

0.42±0.0
1 

0.88±0.0
1 

0.60±0.0
1 

0.46±0.0
2 

CP 
C 

8.85±0.1
9 

9.77±0.2
9 

1.39±0.10 10.4±0.8 29.9±1.8 
0.25±0.0

2 
0.71±0.0

3 
0.55±0.0

1 
0.48±0.0

1 

β 
8.58±0.1

0 
9.99±0.2

3 
1.43±0.04 10.5±0.5 29.9±0.3 

0.28±0.0
3 

0.75±0.0
3 

0.57±0.0
1 

0.48±0.0
0 

C 
C 

11.7±0.1
1 

11.7±0.1
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1. Foreword 

In the previous chapters the development of imaging strategies for the evaluation of 

myelin content along with the characterization of animal models of multiple 

sclerosis and Alzheimer‘s disease at an anatomical level have been accomplished. 

Although the recovery of lost myelin should be a priority for remyelinating 

therapies, it is clear that any potential therapeutic approach should aim to a 

functional recovery of the brain. In other words, a recovery of damage of anatomical 

structures might not ensure that affected functions could be recovered. In this 

chapter, the impact of myelin pathology at a functional level will be described by 

means of resting-state fMRI (rs-fMRI), further used to compare the processes of 

spontaneous vs. clemastine enhanced remyelination processes at a functional level.  

Additionally, we do consider that the evaluation of a remyelination therapy, such as 

clemastine, in the cuprizone model by means of the established procedures for the 

assessment of myelin content would add evidence to the suitability of this approach. 

In this way a major priority would be accomplished, contributing to the 

development of remyelination therapies and providing further insight about the 

importance of these processes. 
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1. Introduction 

Multiple sclerosis (MS) is a chronic demyelinating autoimmune disease of the 

central nervous system (CNS) characterized by the reaction of the immune system 

against myelin sheaths, resulting in the altered transmission of the electrical signal 

and in axonal loss. Although currently approved immune modulating therapies have 

shown to be effective in preventing the immune attacks, the disability of MS patients 

still increases in the progressive phase of the disease [50], and further actions are 

required to treat this condition. In this sense, remyelination, defined as the 

restoration of myelin sheaths conducted by myelinating oligodendrocytes, enables 

the functional recovery of neurons and may contribute to enhance the remission of 

clinical symptoms. However, even though migration of oligodendrocyte precursor 

cells (OPCs) into the lesion site has been reported in multiple sclerosis patients [39], 

[410], [411], spontaneous remyelination is frequently incomplete or absent, 

especially in advanced stages of the disease [412].  

Hence, the therapeutic enhancement of remyelination has become a promising 

approach during the last decade [26]. Therapeutics such as the clemastine, a first 

generation antihistaminic, have shown efficacy in promoting OPC differentiation in 

vitro [147] and in stimulating remyelination in animal models, through the M1 

muscarinic receptor [34], [144], [145]. Moreover, clemastine has also shown the 

capacity to shorten the P100 latency delay in visual evoked potentials in chronic 

demyelinating optic neuropathy in human patients [51]. 

Although the mechanisms underlying both demyelination and remyelination have 

been widely characterized in literature, their implications at a functional level, in 

particular in relation to alteration of brain connectivity, have not been fully assessed 

so far.  Resting-state functional magnetic resonance imaging (rs-fMRI) focuses on 
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spontaneous low frequency brain fluctuations of the brain blood oxygen level 

dependent (BOLD) signal that occurs during resting conditions [330]. Anatomically 

organized resting-state networks (RSN) have been described across species and 

confirmed through several techniques such as optical imaging [413],  positron 

emission tomography [414] or electroencephalography [415]. Moreover, this 

technique has revealed functional connectivity abnormalities in many different 

mouse models of disease [186], [310], [334]. 

In this sense, the characterization of the alteration of functional networks associated 

with demyelination and remyelination processes by means of rs-fMRI may represent 

an invaluable tool for the development of novel therapies against the disease. Thus, 

the aim of this study is to longitudinally study demyelination and remyelination 

phenomena, in terms of functional connectivity of the brain, and to establish 

whether rs-fMRI is capable to evaluate the potential therapeutic effects of 

clemastine, in the cuprizone mouse model of MS. 

2. Materials and methods 

2.1. Animals and experimental protocol 

Animal experiments were performed in our Association for the Assessment and 

Accreditation of Laboratory Animal Care International (AAALAC) accredited animal 

facilities, and all animal procedures were approved by our Institutional Animal Care 

and Use Committee (IACUC), and local authorities (Diputación Foral de Gipuzkoa, 

Spain, Project N. PRO-AE-SS-127). 

Toxic-induced mouse model of MS was used consisting on the use of the copper-

chelating neurotoxicant cuprizone (N,N′-bis(cyclohexylideneamino)oxamide), which 

is one of the most widely used to study demyelination and remyelination in the 
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mouse [164]. Briefly, demyelination is triggered as a consequence of 

oligodendrocyte death, caused by the toxic, resulting in extensive demyelination 

mostly at the level of the corpus callosum (CC) and the cerebellum of the mouse 

brain, reaching maximal demyelination after 5 weeks of exposure to the toxic [196]. 

One of the main advantages of this model is that demyelination is reversible, and 

remyelination spontaneously takes place during the following weeks, after ceasing 

exposure to the toxic 

Upon arrival at our facilities, mice were acclimated to their new environment for ten 

days prior to the first manipulation. Ad libitum access to standard food pellets and 

autoclaved tap water was provided to the animals under a controlled light 

environment (12/12 h light/dark cycle) in SPF rooms. Eighteen C57BL/6J male mice 

(n=18) of eight weeks of age (Charles River Laboratories, Barcelona, Spain) were 

used for this study. No single animal died spontaneously or by consequence of 

manipulation, and no one has to be sacrificed by the application of humanitarian 

endpoints. At the beginning of the study (week 0), the diet of twelve mice (n=12)  

was switched to 0.2% (w/w) cuprizone-doped food pellets (Envigo TD.140800, 

Envigo Research Model Services, Barcelona, Spain),  for a period of 5 weeks. Food 

was replaced every 3 days and animals were weighed on a weekly basis. At week 

(W) 5, the diet was switched back to a standard one until the end of the study (week 

10). In parallel, 6 control animals (n=6) received the standard diet during the 10 

weeks study period. Half of the animals (n=6) submitted to cuprizone diet received a 

10 mg/kg/day dose of clemastine (ID. SML0445, Sigma-Aldrich, St Luis, MO, USA) 

diluted in water containing 0.25% DMSO (ID. M81802, Sigma-Aldrich, St Luis, MO, 

USA) by oral gavage during 14 days, starting at week 5 of the study (same day of 

interruption of cuprizone diet). Mice that did not receive clemastine, were 

administered with water containing 0.25% of  DMSO (oral gavage) as a control 
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group. The decision about the dose, the frequency and duration of this treatment 

(daily dose of 10 mg/kg for 2 weeks) was based on previous literature [145]. A 

schematic representation of the experimental design is presented in Fig. 4.1. 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Experimental design of the study. Twelve mice (n=12) were treated with cuprizone 
in the diet (0.2 % w/w) for 5 weeks. Next, the diet was switched to a standard one, splitting this 
group in 2: Clemastine treated group (n=6) using a 10 mg/kg daily dose from W5 to W7, and 
spontaneous recovery group (n=6). Control mice were fed with a standard diet throughout the 
whole study period. Functional and T2w anatomical imaging studies were conducted at weeks 
0, 2, 5, 7 and 10 

 

2.1. MRI 

MRI measurements were performed on an 11.7 Tesla horizontal bore Biospec 

117/16 USR scanner (Bruker, Ettlingen, Germany), using 1H mouse brain surface 

coil for reception and a volumetric coil for transmission. Animals were scanned 
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prior to (W0), and at weeks 2 (W2) and 5 (W5), after exposure to cuprizone. 

Afterwards, remyelination and potential effects of clemastine were evaluated by 

scanning the mice at week 7 (W7) and week 10 (W10). (i.e., 2 and 5 weeks after 

withdrawal from cuprizone). 

T2-weighted (T2w) high-resolution anatomical imaging was conducted under 

isoflurane anaesthesia (3.5% for induction, ~2% for maintenance) in a gas mixture 

of N2/O2 (70/30) at 1-1.5 l/min. A TurboRARE sequence was acquired covering the 

full brain with the following parameters: repetition time, TR=5550 ms; RARE = 8; 

effective echo time TE=26 ms; FOV =17.5 mm x 17.5 mm; Image matrix 175 x 175; 

48 slices with a thickness of 0.3 mm without a gap. 

For fMRI studies, anaesthesia was induced with 3.5% isoflurane and was kept at 1.5-

1.8% for maintenance. A single bolus of 0.06 mg/kg dexmedetomidine (Dexdomitor, 

Elanco-Lilly, Madrid, Spain) suspended in 250 µl of NaCl was subcutaneously 

administered 15-20 minutes before functional imaging acquisition, followed by a 

decrease of isoflurane levels to 0-0.5% within the following 5 minutes, with 

continuous adjustments to maintain respiration rate of the animals at 100-120 

breaths per minute during the whole functional imaging data acquisition. 

During fMRI sessions, an anatomical T2-weighted image was acquired for image 

registration purposes, with the same geometrical parameters (same coordinates 

origin, spatial resolution and slice orientation, thickness and gap) as functional 

imaging sets. Imaging parameters were: RARE sequence with a RARE factor of 8,  TR 

=2500 ms; Effective echo time =30 ms; FOV = 17.5 mm x 17.5 mm; image matrix = 

96 x 96; 9 slices of 0.5 mm thickness with 0.1 mm inter-slice gap (covering a total 

length of 5.3 mm). 

For functional imaging, a 2D multi-slice gradient echo-planar imaging (GE-EPI) 
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protocol (adapted from (Grandjean et al., 2014)) was used with the following 

parameters: TR/TE=2840 ms/13 ms; FOV = 17.5 mm x 17.5 mm; image matrix = 96 

x 96; 9 slices of 0.5 mm with 0.1 mm inter-slice gap; Number of repetitions n= 115 

(for a total scanning time of 5 min 26 s). After finishing functional imaging sessions 

animals were recovered, reverting dexmedetomidine by an i.p. injection of 1mg/kg 

Atipamezol (Antisedan, Pfizer, Madrid, Spain), suspended in 100 mL of NaCl. 

2.2. Image analysis 

Processing of anatomical and functional NIFTI [416]  images was performed with 

FSL [FMRIB (Oxford Centre for Functional MRI of the Brain) Software 

Library; http://www.fmrib.ox.ac.uk/fsl, (Jenkinson et al., 2002; Smith, 2002)]. 

Single-session probabilistic Independent Component Analysis (pICA) was conducted 

using Melodic interface of FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC), 

including motion correction (MCFLIRT) and high-pass temporal filtering (< 0.01 Hz). 

Independent components were classified following the approach put forward by 

Griffanti and colleagues [417]. After the regression of noise components, group 

Independent component analysis was performed with MELODIC, applying a 0.3 mm 

full-width half maximum (FWHM) Gaussian kernel for smoothing [418]. Functional 

images were first registered to anatomical images and then to the publicly available 

AMBMC (Australian Mouse Brain Mapping Consortium, http://www.imaging.org.au 

/AMBMC/) C57BL/6J mouse atlas. Spatial maps generated from the group ICA were 

thoroughly inspected to select networks of interest based on previous studies [330], 

[336]. 

Concerning group-spatial maps, dual regression was used to generate subject-

specific versions of the spatial maps and associated time series. [419], [420]. Finally, 

FSL's randomize permutation-testing tool was used to look for group differences 

http://fsl.fmrib.ox.ac.uk/fsl
http://www.imaging.org.au/
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and significant networks, at p<0.001 corrected p values. For group comparisons, the 

threshold of the corrected p-value was set at p<0.05. 

Simultaneously, 13 regions of interest (ROIs) were extracted from the anatomical 

atlas and grouped in three main networks: 1) The Cortical Network (CN), 

encompassing the primary (M1) and secondary (M2) motor cortex and the primary 

(S1) and secondary (S2) somatosensory cortex. 2) The Subcortical Network (SN), 

involving the thalamus (Th) and the caudate putamen (CPu). 3) The Default Mode 

Network (DMN), composed by the prelimbic cingulate (Cg), the piriform cortex (Pir), 

the rostral dorsal prelimbic cortex (PrL), the retrosplenial granular and dysgranular 

cortex (RSG/RSD), the hypothalamus (Hyth), dentate gyrus of the hippocampus 

(Hc/dg) and the hippocampal commissure (Hc). All these regions were selected 

separately in each of the brain hemispheres (we have used prefix “l” for left and “r” 

for right hemispheres, when presenting results of each ROI). To facilitate 

interpretation of results, regions involved in the DMN and the hippocampus have 

been grouped (grouping the Hc and the Hc/dg), which has shown to be altered in the 

cuprizone model [186]. Particular attention has also been set for the cortico-

thalamic network, due to its importance in sensory processing, comprising 

interactions between the thalamus and cortical regions [421].  

Finally, Seed-based Correlation analysis was conducted. Group level full correlation 

analysis was carried out between pairs of ROIs with a personalized version of 

FSLNets (v0.6; www.fmrib.ox.ac.uk/fsl). Correlation matrices were constructed with 

a customized script. 

T2w anatomical images have been used to compare myelin content between groups. 

Global intensity normalization (mean=10000) of skull stripped high-resolution 

anatomical images were performed and signal intensity values were measured in 

http://www.fmrib.ox.ac.uk/fsl
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the medial corpus callosum (med-CC) of the brain, where demyelination is more 

evident in cuprizone exposed mice [196]. To avoid user-dependent ROI selection 

biases, high resolution anatomical images were registered to a down-sampled 

anatomical atlas, and the CC region was automatically extracted. 

2.3. Statistical analysis 

Graphpad/Prism (Graphpad Software, San Diego, CA, USA) and Biovinci (BioTuring 

Inc., San Diego, CA, USA) software were used for statistical analyses. For functional 

data, all the cross-correlations involved in each of the studied networks were 

averaged and the total standard deviation was calculated, assuming the 

independence of each interaction within each mouse. Both for functional and 

anatomical data D’agostino-Pearson normality test was performed to assess the 

distribution of data. When data were normally distributed for all groups, a two-

tailed unpaired t-test was performed. Otherwise, groups were tested with the non-

parametric Mann-Whitney test.  

For statistical significance we need to consider that despite groups are formed by 

n=6 animals, the analyzed networks contain a much higher number of experimental 

units. For the calculation of the mean±SD values of z-score of a particular network, 

this number of n=6 has to be multiplied by the number of individual interactions 

between pairs of ROIs that form part of the considered network (each interaction 

has its own z-score value and is an experimental unit). Thus the number of 

experimental units for the comparison of z-scores of the Default Mode Network is 

neu=6x91=546, being 6 the number of animals and 91 the number of interactions 

between regions of interest forming part of the DMN for each animal (91 z-scores 

for each animal), for the thalamic interactions neu=6x25=150, the same as for 
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hypothalamic interactions (neu=6x25=150), for thalamocortical interactions 

neu=6x16=96 and for homotopic interactions neu=6x13=78.  

Using the software G*Power3.1.9.2 (University Düsseldorf) we have calculated the 

minimum effect size or Cohen’s d value required to achieve a value of α=0.05 and (1-

β)=0.95 in a one-tail t-test with two samples of independent means and equal size, 

resulting in (d≥0.2) for n=546, (d≥0.381) for n=150, (d≥0.477) for n=96 and 

(d≥0.53) and for n=78 experimental units per group, respectively. 

 Now, using the equation of Cohen’s d value, given by: 

(𝐶𝑜ℎ𝑒𝑛′𝑠)𝑑 =
𝑀2 − 𝑀1

√(𝑆𝐷1
2 + 𝑆𝐷2

2) 2⁄

 

Where M1 and M2 are the mean values of the variable for groups 1 and 2 and SD1 

andSD2 are their standard deviations, and considering that SD1 = SD2 = 0.5 M1 (i.e. 

that SD is the same for both groups and equal the 50% of the mean of group 1, which 

is in the order of magnitude of those values observed in our experiments and others 

reported in literature), and expressing M2 as a percentage of change from M1 (i.e. M2 

= (1+x) M1, or M2 is M1 incremented by a 100 x %) the equation simplifies to: 

x ≥ d/2 

Under these plausible conditions for our experimental design and setup, changes 

equal or higher to 10% in the mean z-score of the DMN (x≥(dDMN/2)=(0.2/2)=0.1) 

will be significant at the level of p<0.05, using an n=6 animals (546 experimental 

units). In the same way, changes in mean z-score equal or higher than 19% for 

thalamic and for hypothalamic interactions, equal or higher than 24% for thalamo-

cortical interactions, or equal or higher than 26% for homotopic interactions, 
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differences will be significant at the level of p<0.05, under our experimental design 

(n=6 animals per group) and under our experimental conditions (SD1 ~ SD2 ~ 0.5 

M1). 

 

3. Results 

3.1. Effects of demyelination and remyelination at an anatomical level 

The sustained administration of 0.2% (w/w) cuprizone in the diet to mice induces a 

loss of myelin that can be visualized as an increase of signal intensity on T2w 

anatomical MRI images (Fig. 4.2A). In this figure it is noticeable how the contrast 

between white matter (hypointense on T2w images) and grey matter vanishes upon 

loss of myelin, concomitant to the poisoning with cuprizone. Such loss of contrast is 

highly pronounced in large white matter tracts (such as the central section of the 

corpus callosum, ROI magnified under each brain image in Fig. 4.2A) but it is barely 

distinguishable by the naked eye on other regions of the brain. Cuprizone 

withdrawal induces a progressive increase of contrast in these regions, suggesting 

remyelination (Fig. 4.2).  

Fig. 4.2B presents the relative changes on signal intensity on T2w images for the 

three study groups during the follow-up period, for two different regions of interest 

(medial corpus callosum and caudate putamen). Demyelination in the med-CC 

progresses during the administration of cuprizone, peaking at week 5. Thus, 

compared to controls, these animals present a significant increase in normalized 

T2w signal intensity (ΔN.T2wSI = 4.1%, p<0.05) at the med-cc, after two weeks of 

exposure to cuprizone. Such difference reaches a value of 12% at week 5, which is 

maintained until week 7 (ΔN.T2wSI =13.2 %).  
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Next, the progressive restoration of myelin sheaths in the CC by spontaneous 

remyelination reduces the difference between these two groups to 9.5% at week 10. 

Thus, according to T2w MRI, only partial remyelination is observed in this animal 

model, since values do not reach original levels. Conversely, at the hypothalamus, 

were no extensive demyelination was expected, no changes were observed on T2w 

signal intensity all through the study (Fig. 4.2B).  

On the same plots, we also present the normalized T2w signal intensity for the 

group of animals treated with clemastine during the remyelination period, 

observing a significant reduction of this parameter at week 7 (ΔN.T2wSI = -3.5%, 

p<0.05) respect to the cuprizone group. At this point, the clemastine treated group 

showed however higher values of signal intensity than the control group (ΔN.T2wSI 

= 10%, p<0.05). Interestingly, at week 10, there was no significant difference in the 

normalized signal intensity at the med-CC between both groups exposed to 

cuprizone (spontaneous recovery vs. clemastine treated animals). 
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Figure 4.2. Effects of demyelination-remyelination on T2w signal intensity. Poisoning with 
cuprizone (demyelination, weeks W0 to W5) induces T2w signal intensity increase in regions 
with a high density of myelin (such as the corpus callosum), leaving invariant the signal on 
regions with lower myelin density (such as the hypothalamus). Returning to a standard diet 
(remyelination, weeks W5 to W10) renormalizes T2w signal to a certain extent. A) 
Representative MR images of the brain of a mouse at different periods of the study, with a 
magnification of the central zone of the corpus callosum. B) Quantitative representation of 
longitudinal changes on signal intensity observed for the three studied groups, at two regions of 
interest representative of considerable (corpus callosum) and not-significant (hypothalamus) 
alterations on myelin content (black *: p<0.05 between control and cuprizone, grey *: p<0.05 
between Clemastine and cuprizone).    
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Signal intensity levels of these two groups were significantly higher than the 

(healthy) controls (ΔN.T2wSI = 8% for clemastine and 9.5% for cuprizone groups, 

both at p<0.05).  

Finally, a trend to lower signal intensity values (higher myelin content) with aging 

was observed for the med-CC in healthy controls (Fig. 4.2B), with no significant 

differences from week to week, but with a cumulative effect of 4.5% (not significant 

at p<0.05 level, probably due to the high standard deviations observed) from week 0 

to week 10 (8 to 18 weeks of age). No significant variations on signal intensities 

were observed for controls at the Hyth (grey matter, therefore low myelin content) 

through the whole study (Fig. 4.2B).  

3.2. Cuprizone poisoning alters functional networks  

To assess the level of brain activity in the animals, z-score cross-correlations 

matrices were constructed (Fig. 4.3). In these matrixes, 13 regions of the left (prefix 

“l”, framed in blue) and 13 of the right (prefix “r”, framed in red) brain hemispheres 

were correlated by pairs (see methods section and Fig. 4.3 legend for the list of 

analyzed regions), generating a total of 325 z-score values (actually 676, but 

matrixes are symmetric about their diagonal). The strongest correlations seem to 

correspond to inter- and intra-hemispheric cortical and cortical-subcortical 

interactions, and between specific regions inside the DMN. Cross-correlation z-score 

matrixes were constructed for each group of animals at all studied time-points. Fig. 

4.4 compares the matrixes for the group cuprizone vs. controls, at weeks W0, W2, 

W5, W7 and W10, while Fig. 4.5 presents the matrixes for the group cuprizone vs. 

group clemastine at weeks W7 and W10. (X and Y axes, i.e. ROI legends, are the same 

as for Fig. 4.4 in all matrixes presented in both figures). 
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Figure 4.3. Representative full cross-correlation matrix obtained from the seed-based 
functional connectivity analysis. Colours represent the degree of correlation (z-scores with a 
scale bar on the side) observed between multiple pairs of regions of the brain, corresponding to 
the cortical network (CN), subcortical network (SN) and default mode network (DMN). 
Analyzed ROIs: (l and r prefixes stand for left and right brain hemispheres) M1, M2 (primary 
and secondary motor cortex); S1, S2 (primary and secondary somatosensory cortex); Cpu 
(caudate-putamen); Th (thalamus);  Cg (prelimbic cingulate); Pir (piriform cortex); PrL 
(rostral dorsal prelimbic cortex); RSG/RSD (retrosplenial granular and dysgranular cortex); 
Hyth (hypothalamus); Hc/dg (dentate gyrus of the hippocampus); Hc (hippocampal 
commissure). 

 

Figure 4.4. On the right page, full cross-correlation matrices of control vs. cuprizone treated 
animals at the different time-points of the study including periods of demyelination (weeks W2 
and W5) and remyelination (weeks W7 and W10). No significant changes were observed 
between groups prior to starting the treatment (W0). X and Y axes (ROI labels) and colour scale 
(z-score) are the same as presented in figure 4.3 but obviated here to facilitate visualization.  
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The analysis of individual correlations from these matrixes could be rather complex, 

considering the large number of regions of interest included. For this reason, we 

further processed the data to provide simpler parameters that reflect brain 

functionality with fewer variables.  

Thus, for each set of data presented in Fig. 4.4 and 4.5, we defined; a) the mean 

functional connectivity (mFC) of all homotopic correlations (e.g. lM1-rM1, lTh-rTh, 

etc.), b) the mFC of all thalamo-cortical correlations, and c) the mFC of the DMN (Cg, 

Pir, PrL, RSG/RSD, Hyth, Hc/dg, Hc). Plots of variation with time of these 3 

parameters (mFC ± SD) are presented in Fig. 4.6. When this analysis is performed, 

up to 3 different temporal profile patterns of change in mFC were detected: 

1)  For the homotopic interactions (h-mFC) no significant differences between 

controls and cuprizone groups were observed until week 5 (W5), where the 

cuprizone exposed mice show a reduced strength in homotopic correlations 

compared to controls (h-mFC: control = 0.76±0.30 vs. cuprizone = 0.65±0.3, 

p<0.05). Such hypoactivity is still significant at week 7 (h-mFC: control = 

0.82±0.33 vs. cuprizone = 0.68±0.36, p<0.05), but reverted at week 10 of 

experiment. 

2)  For thalamo-cortical network (tc-mFC), no significant difference is observed 

at the beginning of experiment between controls (tc-mFC = 0.70±0.33) and 

cuprizone treated mice (tc-mFC = 0.65±0.26). The administration of 

cuprizone for 2 weeks resulted in an increase of connectivity in the thalamo-

cortical network compared to control mice (tc-mFC: control = 0.65±0.14 vs. 

cuprizone = 0.79±0.21, p<0.05). This condition is reverted after 5 weeks of 

administration of cuprizone, were the intoxicated mice exhibited a reduced 

strength of connectivity in this network (tc-mFC: control = 0.65±0.20 vs. 
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cuprizone = 0.54±0.22, p<0.05). Contrary to the recovery observed for 

homotopic interactions, the difference between cuprizone exposed and 

control mice is maintained until the end of the study (tc-mFC: control(W7) = 

0.71±0.24 vs. cuprizone(W7) = 0.62±0.21, p<0.05 ; control(W10) = 0.67±0.30 vs. 

cuprizone(W10) =0.57±0.37, p<0.05). 

3)  The DMN show a similar trend like the thalamo-cortical network until week 

5, and then a progressive recovery as the one showed by homotopic 

interactions. Briefly, no significant difference is observed at the beginning of 

the experiment between control mice and cuprizone exposed mice (DMN-

mFC: control = 0.65±0.20 vs. cuprizone =0.54±0.22, p<0.05). At week 2 an 

increase in DMN connectivity is observed in the cuprizone exposed mice 

compared to control mice (DMN-mFC: control = 0.44±0.23 vs. cuprizone 

=0.56±0.28, p<0.05).   

The exposure to cuprizone for 5 weeks cause a substantial reduction of connectivity 

of cuprizone exposed mice (DMN-mFC = 0.41±0.25) compared to control group 

(DMN-mFC = 0.50±0.23). The withdrawal of cuprizone from diet enables a 

progressive restoration of the DMN. At week 7, cuprizone exposed mice still exhibit 

reduced connectivity (DMN-mFC: control = 0.51±0.26 vs. cuprizone =0.44±0.26, 

p<0.05) compared to control mice, while at week 10 of study no significant 

alteration is observed. 

In addition, a fast inspection of individual ROIs at the maximum point of 

demyelination (W5) reveals the highest differences between cuprizone and controls 

at the level of the Hyth and the Th. Plots of the change of z-score vs. time for these 

two regions are included in Fig. 4.6. After suffering an increase in connectivity 

strength at week 2 (p<0.05), a decay in correlation was observed in the Hyth (z-



 
 
 
 
 
 
 
 

Chapter 4 | 187 

 

Score: control = 0.53±0.20 vs. cuprizone = 0.36±0.18, Δz-score = 32%, p<0.05) and 

Th (z-Score: control = 0.64±0.21 vs. cuprizone = 0.48±0.25, Δz-score = 25%, p<0.05) 

(Fig. 4.6B). For both groups the difference with controls was gradually reduced until 

week 10 of the experiment, showing still a significant difference at week 7 of the 

experiment (z-Score: control = 0.66±0.26 vs. cuprizone = 0.56±0.25, p<0.05). 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Full cross-correlation matrices showing changes on functional patterns of mice 
during remyelination (weeks W7 and W10) of cuprizone poisoned mice and untreated 
(spontaneous recovery) vs. treated with Clemastine form weeks W5 to W7. X and Y axes (ROI 
labels) and colour scale (z-score) are the same as presented in figure 4.3 but obviated here to 
facilitate visualization. 
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3.3. MRI is sensitive to clemastine enhanced remyelination 

The administration of clemastine enabled the recovery of the thalamo-cortical 

network in intoxicated mice, which unlike the homotopic interactions and the DMN, 

was not spontaneously recovered after the retrieval of cuprizone. The treatment of 

clemastine lead to an increase of the connectivity of the thalamo-cortical network, 

both at week 7 (z-score, clemastine = 0.73±0.26; cuprizone =0.62±0.21) and at week 

10 of study (z-score, clemastine = 0.68±0.22; cuprizone =0.57±0.37) (Fig. 4.6A).  

Concerning homotopic interactions and DMN, no significant differences were found 

between both groups all along the study. 

With respect to the administration of clemastine, the recovery of the mice back to a 

healthy pattern was accelerated, especially in the most affected regions. Two weeks 

after the withdrawal of cuprizone from diet (W7 of the study), when the cuprizone-

exposed mice present a partial remyelination in the main affected regions, 

clemastine-treated mice showed higher correlation levels at the Th (z-score at 

clemastine-treated = 0.69±0.25, at W2= 0.56±0.25, ΔmFC=19%, p<0.05)  and Hyth 

(z-score at W0 = 0.46±0.24, at W2= 0.40±0.23, ΔmFC=13%, p<0.05), compared to 

the untreated cuprizone-exposed group. Importantly, these were the regions highly 

altered by cuprizone exposure at the maximum point of demyelination (week 5). 

Once the remyelination is completed after 5 weeks of the withdrawal from 

cuprizone, the connectivity of clemastine-treated and non-treated groups was 

notably similar (Fig. 4.6).   
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Figure 4.6. Plots of the average z-scores (mean ± SD) over time for control, cuprizone exposed 
and clemastine treated mice. A) Homotopic (left vs. right) correlations, thalamo-cortical 
network and default mode network. B) Thalamus and hypothalamus. “For different ROIs, as 
indicated in the title of each plot”. (black *: p<0.05 between control and cuprizone, grey *: 
p<0.05 between Clemastine and cuprizone).    

 

3.4. Functional networks of the brain 

In the previous sections, an analysis of brain activity was reported on the base of 

interactions between ad hoc selected regions of interest (seed-based analysis). 

Alternatively, we also performed a (seed-free) group Independent Component 

Analysis (gICA) of each group of animals at each time point of the study. The 
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performance of this approach leads to functional maps of the brain, describing 

different active regions for each group of animals. In figure 4.7 we present a 

representative output of the analysis (with a level of significance of p<0.001) for one 

group of animals at one specific time point. Detected active regions corresponded to 

clearly identifiable components (at both brain hemispheres) of the SN, CN and DMN 

networks (Fig. 4.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Representative functional hubs derived from the group Independent Component 
Analysis (gICA). Regions corresponding to A) cortical networks, B) subcortical network and C) 
default mode network are represented. Significance of each pixel for each network on the dual 
regression analysis is represented overlaid in colour, from red (p<0.05) to yellow (p<0.001).  
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Functional connectivity analysis revealed higher connectivity in control mice in the 

motor cortex (specifically at the M2 region) comparing to cuprizone treated groups 

after 5 weeks of exposure to cuprizone (p<0.05) (Fig. 4.8A). In fact, if we compare 

anatomical T2w images of mice at this time point (Fig. 4.8B), we could observe a 

change in contrast on the fibres of the motor area. However, the mean of the signal 

intensity for these two groups was not significantly different at p<0.05 level 

(normalized mean signal intensity: control = 17847±506 vs. cuprizone = 

18006±330). gICA analysis showed no other significant differences between groups 

and any other time point. 

 

Figure 4.8. Group-level comparison by means of dual-regression of cuprizone treated vs. 
control mice. A) At week W5, control mice show a significantly higher activation at the 
secondary motor cortex (in both hemispheres), compared to cuprizone treated mice. Colour 
overlay indicates the significance level from red (p<0.4) to yellow (p<0.05). B) Colour-coded 
(with scale bar in arbitrary units) T2w MRI images of two animals showing lower signal 
intensity (representative of higher myelin content) on the M2 region (arrow) for the control 
group respect to the cuprizone treated animals.  
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4. Discussion  

4.1. Demyelination effects on functional connectivity 

Myelin-related disorders include an important amount of neurological pathologies 

that range from rare genetic conditions to common demyelinating diseases, such as 

multiple sclerosis [422]. Myelin loss per se results in alteration of electrical 

conduction along affected axons, whose accumulated effects result on axonal 

dysfunction and loss, and on clinical deficits and functional disability. Concurrently, 

and in response to most demyelinating conditions, remyelination, the regenerative 

process by which myelin sheaths are restored, takes place in a spontaneous manner 

[423].  

However, the potential extension of the damage together with the fact that 

pathological conditions and aging may affect the capacity of individuals to repair 

myelin has triggered a growing interest in therapeutic approaches to enhance 

remyelination for the treatment of demyelinating conditions [423].  

In this sense, the use of animal models of de- and re-myelination, such as the 

cuprizone murine model, [424] is boosting our understanding of these processes, 

and represents a highly valuable tool for the development of remyelinating 

therapies.     

Though an important body of research has been published about the molecular 

[425], anatomical [426], metabolic [427] and behavioral changes [428] associated to 

the loss of myelin in mice intoxicated with cuprizone, the use of functional imaging 

techniques to characterize how neuronal networks and brain function are altered 

during the processes of de- and remyelination are very scarce for this model. In fact, 

to our knowledge, there is only one work that has used functional MRI to study 
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alterations of functional networks in cuprizone treated mice [186].  In this work, 

Hübner et al. perform an extensive study of the whole brain functional and 

structural connectivity of mice at a chronic state of demyelination (chronic 

exposition to cuprizone), demonstrating the capacity of resting-state fMRI studies to 

provide invaluable information about the effects of demyelination on the brain, at a 

functional level. 

In this work, we have applied resting-state functional MR imaging (rs-fMRI) to 

further deep into the knowledge of the functional changes associated to cuprizone 

intoxication in the murine model, including not chronic, but acute changes in brain 

connectivity that include periods of demyelination and spontaneous remyelination 

(after withdrawal from the toxicant). Thus, our study has been designed in a 

longitudinal manner, including up to 5 rs-fMRI  sessions per animal within 10 weeks 

(5 weeks of demyelination and 5 weeks of remyelination), to provide information 

about the fast and partially reversible functional reorganization of brain networks 

associated with the loss and regain of myelin, complementing previous findings on 

this model by Hübner et al. 

Furthermore, we aimed to study if the use of established therapeutics that promote 

remyelination, such as clemastine [144], have an impact on brain functional 

reorganization during the remyelinating processes, in comparison to animals that 

undergo a spontaneous recovery from the demyelinating insult. 

In this sense, our results confirm the existence of significant changes in the mouse 

brain, both at anatomical and functional level, concomitant to the processes of 

demyelination and remyelination in the murine cuprizone model of multiple 

sclerosis. At an early stage (week 2 after cuprizone exposure), while demyelination 

progresses in the brain of intoxicated animals (as revealed by anatomical T2w MRI), 



 
 
 
 
 
 
 
 

194 | Chapter 4 

a state of increased functional connectivity (hyperactivity) is detected for these 

animals respect to healthy controls as revealed by Fig. 4.4. This phenomenon has 

already been described for several neurological pathologies or conditions, including 

multiple sclerosis [429], [430], and both in rodents [431], [432] and humans [335], 

[433]. Indeed, such hyper-connectivity has been associated with the first state of 

neurodegenerative diseases [434], [435]. Gorges and colleagues [321] suggest that 

during the first stage of the disease, a compensatory response (overcompensation) 

is given, finally yielding in a connectivity and cognitive decline at later stages, when 

the brain cannot endure further damage. Furthermore, behavioural tests conducted 

in cuprizone intoxicated mice have revealed hyperactivity and reduced anxiety after 

three weeks of cuprizone treatment (when still demyelination is not extensive) and 

motor dysfunction after 5 weeks of treatment, when extensive demyelination is 

patent [436]. Our results fully support these observations, since the early increase in 

brain activity is later transformed in a decreased connectivity at week 5, the peak of 

demyelination in this animal model.  

An alternative interpretation of this finding can be provided from a metabolic point 

of view. At the CNS, myelin provides the insulation required for the fast saltatory 

conduction of electrical impulse throughout the internodes up to the nodes of 

Ranvier. In this way, the metabolic requirement of neurons for impulse transmission 

is minimized since it avoids the continuous regeneration of the action potential 

[437]. Hence, for demyelinating diseases such as MS, before a total failure to 

transmit electrical impulses happens in severely affected axons, there is a transient 

state during which impulse transmission is still feasible but at a cost of high 

metabolic demand, required by partially denuded axons to function. Such increased 

metabolic demand could call for higher oxygen and nutrient need, [438], [439] 

affecting (actually increasing) the BOLD effect, on which functional MRI is based. 
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Herein the observation of a hyperactive state, before falling into hypoactivation or 

neuronal networks at more developed stages of demyelination. 

While the connectivity at week 2 suffers a global increase for cuprizone treated 

animals, reflected in an increase of z-scores in practically all the analyzed 

correlations between pairs of nodes (see Fig. 4.4), at the point of maximal 

demyelination (week 5). Such an increase is neutralized and actual several 

correlations suffer a significant drop in z-score respect to healthy controls. This drop 

is especially noticeable for cross-correlations that involve the thalamus (Th) and the 

hypothalamus (Hyth), affecting the thalamo-cortical network and the DMN. This 

result is in total agreement with those reported by Hübner et al. for chronic 

demyelination, [186] confirming that functional alterations on both networks 

already take place at acute phases of demyelination, and remain permanently if 

remyelination does not occur (like in the experiment performed by those authors).   

Our data also reveals that homotopic correlations (i.e. transcallosal interactions, 

those taking place between nodes located at different brain hemisphere) are also 

decreased at week 5. It is logical to consider that the CC might play a key role in this 

interactions, since it is the largest neural pathway between both hemispheres of the 

brain [440], enabling the connection between homologous nodes. We (Fig. 4.2) and 

others [425], [426] have clearly seen a reduction on white matter content at the 

mid-section of the CC at week 5 post cuprizone. Reduction of homotopic correlations 

in relation to reduced mid-CC section is not exclusive for this model of MS and they 

have also been described in schizophrenia [441], where an abnormal CC size has 

been reported [442]. Interestingly, the cuprizone mouse model has also been put 

forward as a model for schizophrenia since it mimics some of its symptoms, 

including spatial working memory and social interaction  [443], [444].  
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Further functional alterations associated with cuprizone triggered demyelination 

have been revealed in our group Independent Component Analysis, which shows a 

higher level of functionality at the secondary motor cortex (M2) in control mice, 

compared to cuprizone exposed mice, as reported by other authors [428], [436], 

[445].  

4.2. Spontaneous remyelination effects on functional connectivity 

The withdrawal of cuprizone from the diet led to a progressive increase of 

functional connectivity of poisoned mice towards normal values observed in healthy 

controls, showing a complete recovery of brain function at week 10 (5 weeks post 

withdrawal), with no significant differences between controls and cuprizone treated 

mice. This result suggests that spontaneous remyelination, reflected in a partial 

renormalization of T2w signal in MRI images (Fig. 4.1), might be a plausible 

explanation for the return to normal functional patterns in the brain of intoxicated 

animals, as it happens in other animal models [446], [447]. Regardless of the role 

that myelin plays, providing insulation and promoting fast impulse propagation 

[35], oligodendrocyte proliferation and the remyelination carried out by them can 

allow the trophic support of this cells to the axon [448], which might also benefit 

functional recovery. The recovery of brain function is not immediate to the 

withdrawal of cuprizone, but progressive over time, since we observed that at week 

7 of the study (week 2 after withdrawal from cuprizone) the mean cross-correlation 

values of cross-correlations involving the most affected nuclei, i.e.  Th and the Hyth, 

are still lower for cuprizone treated mice, respect to the healthy controls. These 

rules out the possibility that cuprizone ingestion is, per se, the origin of alterations 

observed in the connectivity of the brain (sudden recovery after withdrawal would 

be expected in this case). 
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Taking overall all the results for the whole studied period (demyelination + 

remyelination periods) it is interesting to notice that up to 3 different patterns of 

changes in functional connectivity have been detected, depending on the type of 

interactions considered for analysis (see Fig. 4.6). Looking at homotopic 

interactions, still, normal activity is detected at week W2 (no hyperactivity), 

dropping to abnormally reduced levels of activity at week W5 (peak of 

demyelination). Significantly reduced levels of activity are still detected at week W7, 

when spontaneous remyelination has been occurring for already 2 weeks, and only 

revert to normal levels of activity at week W10. The third pattern of network 

reorganization has been detected for the thalamo-cortical network that shows 

hyperactivity at week 2 and reduced activity at week 5 for cuprizone treated mice, 

but functional deficits are maintained through the duration of the whole study, 

never reaching normal values despite spontaneous remyelination takes place. This 

result is actually very interesting because is in total agreement with the 

observations of Hübner et al. that find that the thalamo-cortical networks is one of 

the affected ones after chronic demyelination induced by prolonged exposition to 

cuprizone [186]. Finally, for the default mode network (DMN) the pattern is very 

similar to the one observed for the thalamo-cortical network, except for the fact that 

in this case, normal levels of activity are detected at week 10.  

The importance of this finding, reporting up to 3 different patterns of functional 

networks reorganization over time, is that it may explain the differences and 

discrepancies observed in the studies of behavioural tests performed in cuprizone 

treated mice, reported in the literature (see [449], for a recent review on the 

subject). The different nature of the different behavioural tests implies that they 

may be focusing on the use of particular networks, and therefore one could expect 

different behaviour of animals during the demyelination and remyelination periods, 
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depending on the characteristic network reorganization pattern that corresponds. 

4.3. Clemastine enhances remyelination and functional recovery  

Clemastine, a widely available H1-antihistamine that targets the M1 muscarinic 

receptor, is claimed to be one of the most robustly validated compounds with 

remyelinating capacity, whose effects have been demonstrated in multiple 

independent laboratories, with a wide variety of in vitro and in vivo models [450]. 

This compound has previously shown to promote behavioural recovery in the 

cuprizone model, [145] and studies conducted in humans demonstrated a more 

efficient remyelination capacity and reduction of clinical disability in patients 

treated with this drug  [295], [451]. Thus, a group of cuprizone intoxicated animals 

have been treated with clemastine, with the aim to compare the potential benefits of 

therapeutically-enhanced remyelination, in comparison to spontaneous 

remyelination, both at an anatomical and functional level. Interestingly, literature 

describing the beneficial effects of clemastine in animal models of demyelinating 

disorders has mostly been based on histopathological observations, and behavioural 

testing, but no imaging studies have yet been reported, to our knowledge. 

Data presented in Fig. 4.2 shows that clemastine-treated animals present a faster 

axonal recovery than spontaneously recovering animals, with a significantly lower 

signal intensity on T2w images at large white matter tracts (such as the middle 

section of the corpus callosum) at week 7 (2 weeks of treatment), although at the 

end of the study (week 10) no significant differences were found between both 

cuprizone groups. In any case, T2w signal never drops to the level of controls, 

indicating that remyelination takes place only partially, after intoxication with 

cuprizone. It is interesting to notice that the difference on T2w signal between 

clemastine treated and non-treated animals is maintained from weeks 5 to 7 (when 



 
 
 
 
 
 
 
 

Chapter 4 | 199 

 

treatment is interrupted) and disappears towards week 10. From this result, one 

could speculate if prolonged treatment with clemastine would have a further effect 

on remyelination. This is a limitation of our study since we have tested only one 

dose and treatment period (based on previous literature Liu, 2016, although other 

authors have used longer treatment periods; Li et al, 2015) and further work on this 

direction would have to be performed in the future, to see if clemastine is able to 

promote further remyelination or at less shortens the recovery time if no further 

effect is observed, in comparison with spontaneous remyelinating mechanisms. For 

other brain regions with lower axonal density, such as the hypothalamus, no 

differences were found between groups (controls, cuprizone and 

cuprizone+clemastine) at any time-point (Fig. 4.2) but this may be indicative of a 

lack of sensitivity of the MRI technique to detect minor changes on myelin in these 

areas, rather than the absence of differences at all. 

Thus, our in vivo, non-invasive and longitudinal MR imaging studies show, in 

agreement with previous histopathological analysis (Li, 2015; Liu, 2016, and others) 

that clemastine has an impact on the remyelinating process, at anatomical level, and 

speeds up recovery, though final endpoints seem to be similar to those achieved by 

spontaneous remyelination, once the treatment is interrupted. The question that 

remains now is how the use of clemastine impacts on the functional organization of 

the brain after demyelination and during remyelination.  

Accordingly, with anatomical data, our functional MRI studies also show that 

clemastine enhances recovery from the cuprizone insult, reflected mainly in higher 

connectivity of the cortico-thalamic network and the mean connectivity of the 

thalamus and hypothalamus for the group of animals treated with clemastine, 

respect to the untreated cuprizone group. These differences are already significant 

at week 7, after 2 weeks of treatment with clemastine, reaching these animals the 
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same level of connectivity than controls (total recovery, in terms of strength of 

correlations of functional networks). At the end of the study, there are no significant 

differences in mean functional connectivity among groups (controls vs. cuprizone vs. 

cuprizone+clemastine) at the level of the DMN, Th and Hyth, but there are significant 

differences between the cuprizone group and the other two groups at the level of the 

thalamo-cortical network (the one in which Hübner et al found differences after 

chronic demyelination, Hübner, 2017). In this sense we can claim that clemastine 

actually enhances functional recovery of demyelinating animals, favouring the 

regaining the normal functionality of the thalamo-cortical network, which presents 

persistent alterations (damage) in non-treated cuprizone animals.   

For the rest of affected networks, it is important to argue that, regardless of the fact 

that there were no differences in the degree of recovery at the end of the study, 

between clemastine treated and non-treated cuprizone animals, the faster functional 

recovery promoted by clemastine (functional recovery already present at week 7) 

may be an advantage. Prompt remyelination could not only enable functional 

recovery, but it also prevents axonal degeneration and progression of the disease, 

which is at the final term the responsible of the main disability seen in MS patients 

[27].  

It is uncertain which implications may have the functional differences observed in 

our 10-weeks study on the long term. In fact, Manrique and colleagues have 

reported that animals submitted to cuprizone recover normal motor functions 

shortly after discontinuing the use of toxic, but 6 months later they present again 

some degree of locomotor dysfunction, with axonal loss at the CC [195]. It is 

plausible to believe that early recovery of the thalamo-cortical connectivity 

observed in clemastine treated mice might lead to a reduction or even a total 

correction of such locomotor dysfunction, observed in untreated cuprizone mice. 
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Finally, it is interesting to comment that functional connectivity shows an increasing 

trend for healthy controls, which actually correlates with the lower levels of signal 

intensity in T2w MRI anatomical images (Fig. 4.2) observed in the corpus callosum 

of these animals (indicative of higher axonal density in this portion of white matter). 

This phenomenon can be explained as the regular changes observed in young 

animals along maturation, since animals are young (8 weeks) at the beginning of our 

study and mature 2.5 months after. This result is in line with previously published 

works that report both, a progressive increase of myelin content in the brain of mice 

during their first 6 months of age [452], and an increase on functional connectivity 

at different brain networks between months 2 and 8 of age, when young mice 

mature (Egimendia, 2019).  

5. Conclusions 

In conclusion, our work shows that resting-state fMRI is a valuable tool for the 

longitudinal and non-invasive follow up of changes in functional networks 

organization in the brain during demyelination and remyelination processes. 

Functional studies correlated well with anatomical MRI studies performed by us and 

others, showing loss and subsequent increase of myelin in key areas of the brain, 

such as the corpus callosum. 

During demyelination, cuprizone poisoned mice undergo a reduction in the mean 

functional connectivity on their brain, revealed by cross-correlations between 

homotopic nodes and the thalamo-cortical axis, as well as reduced activity on the 

default mode network. When remyelination (either spontaneous or enhanced by 

therapeutic intervention) takes place, most networks return to normal levels of 

activity with time, except for the thalamo-cortical network, which is only recovered 

upon treatment of the animals with clemastine. In fact, we could confirm that the use 
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of clemastine speeds up the process of recovery upon remyelination (both at an 

anatomical and functional level), although the level of recovery is not higher respect 

to spontaneously recovering animals at the end of the study, except for the 

aforementioned thalamo-cortical network. This difference, in fact, may have 

important consequences at chronic stages.  

Using this longitudinal approach, we have been able to identify up to 3 different 

temporal patterns of functional reorganization in the processes of demyelination-

remyelination, which could help to better understand those processes and potential 

differences on behavioural testing outcomes, depending on the network implicated 

in the development of the observed task. 

Further functional studies should provide evidence to evaluate the potential effects 

of clemastine treatment for longer periods of time that the ones used here, and for 

potential chronic functional differences between spontaneously vs. therapeutically-

enhanced remyelination processes. 
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1. Foreword 

In the second chapter, we have interestingly described how low dose cuprizone 

exposure during 5 weeks can cause MRI detectable abnormalities in white matter 

tracts even 6 months after the administration of the toxic. During regeneration 

studies, such as the ones conducted with remyelination therapies, testing the long-

lasting effects of therapies is highly advisable. These long periods involving the 

monitorization of functional deficits during disease evolution as well as the 

functional recoveries during therapeutic interventions represent a substantial 

fraction of the lifespan of the experimental animals.   

Furthermore, in the previous chapter, we observed an increasing trend in brain 

connectivity in control (healthy) mice, in parallel to an increase in myelination, as 

suggested by our anatomical MRI studies. This evidence suggests that aging, 

including the brain maturation and degeneration processes involving myelin, might 

be a considerable contributing effect on the description of brain connectivity. 

In this chapter we describe the modulation of the brain connectome during the 

maturation and aging of healthy mice, depicted by the resting-state functional MRI 

protocol developed in previous chapters. The description of this natural evolution of 

the brain should be helpful for the interpretation of results and experimental design.   
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1. Introduction 

Mouse models have become the cornerstone of research for neurodegenerative 

diseases such as multiple sclerosis [453], [454], Alzheimer’s disease [455], 

Parkinson`s disease [456] or amyotrophic lateral sclerosis [457]. This has been 

achieved due to the opportunities that mice offer to be genetically manipulated 

along with the continuous discovery of gene mutations related to many 

neurodegenerative pathologies [458].  

In this context, functional magnetic resonance imaging (fMRI) has become a crucial 

tool for the study of functional deficits in brain diseases and of functional 

improvements due to therapeutic intervention, respectively [459]. Resting-state 

fMRI (rsfMRI) is noninvasive and measures at high spatial resolution blood oxygen 

level dependent (BOLD) patterns at low frequencies in the absence of external 

stimuli [301]. From such data, the functional connectivity between different 

anatomical nuclei in the brain is constructed, and the functional neuronal networks 

are determined. Thus, rsfMRI permits to unravel the disturbances of the functional 

neuronal networks during the development of cerebral diseases and their functional 

improvements after therapeutic interventions.  

The study of many cerebral diseases and brain lesions such as e.g. 

neurodegenerative diseases or stroke and the exploration of effective therapeutic 

strategies requires long-term monitoring, often of several months [334], [459], 

[460]. A factor that is, however, often overlooked in rsfMRI studies of mice is the 

progressing age of the individuals during the required longitudinal studies. Here we 

present a rsfMRI study on the effects of aging on functional connectivity in the 

healthy mouse brain in the range of 2-13 months of age. For the analysis of brain 

connectivity, we have combined Independent Component Analysis (ICA) to denoise 
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rsfMRI data and Seed-based Correlation Analysis (SCA) to study the correlation 

between various cortical and subcortical regions of interest (ROIs) while focusing on 

the sensorimotor networks and the default mode network. For the first time, we 

describe changes of the mouse brain connectome during healthy aging, defining an 

inverse U-shape curve for the functional connectivity that peaks at the age of 8-9 

months followed by a substantial continuous decrease during progressing aging. 

2. Materials and methods 

2.1. Animals and experimental protocol 

All animal experiments were performed in accordance with the guidelines of the 

German Animal Welfare Act and approved by the local authorities (Landesamt für 

Naturschutz, Umwelt und Verbraucherschutz NRW). Ad libitum access to food and 

water was provided to the animals under a controlled light environment (12 h 

light/dark). 

Twenty-four C57BL/6J male mice (Janvier, Le Genest-St Isle, France) were studied, 

subdivided into 4 groups of age: 2 months (n=6), 5 months (n=6), 8 months (n=6) 

and 12 months (n=6).  Each group was scanned twice with a one month gap between 

both acquisitions. Thus, eight time points in total were covered in the study: 2, 3, 5, 

6, 8, 9, 12 and 13 months. 

2.2. MRI 

MRI measurements were carried out on a dedicated animal MRI scanner (Bruker 

BioSpec, Ettlingen, Germany) operating with a horizontal magnet at 9.4T. Radio 

frequency (RF) excitation and signal reception were performed with a cryogenic 1H 

quadrature surface coil (CryoProbe, Bruker BioSpin, Ettlingen, Germany). 
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Monitoring of physiological parameters was achieved with a 1025T System (SA 

Instruments, Stony Brook, New York) and recorded with DASYlab Software 

(National Instruments, Austin, TX). Body temperature was measured with a fibre 

optic rectal probe (SA Instruments, Stony Brook, New York) and kept at 37±1 °C by a 

water circulating system (Medres, Cologne, Germany). Anesthesia was induced in all 

mice with isoflurane (3.5%) in air mixture of N2 (70%) and O2 (30%), and was 

reduced to 2% isoflurane in the scanner, where the animal’s head was fixed with ear 

bars and a tooth holder in a dedicated MR compatible animal cradle. 

MRI experiments were conducted using Paravision 6.01 (Bruker BioSpin, Ettlingen, 

Germany). Isoflurane was kept at 1.5-1.8%, thoroughly adjusted throughout the 

duration of the experiments, for keeping the breathing rate stable (100-120 bpm). A 

single bolus of 0.1 mg/kg medetomidine (Domitor, Elanco) was subcutaneously 

-20 minutes before functional imaging 

acquisition. Within 5 minutes following the medetomidine injection, isoflurane was 

decreased to 0.5-0%, maintaining a maximum of 100-120 breaths per minute during 

the complete functional imaging data acquisition. 

An anatomical reference TurboRARE scan was acquired with the following 

parameters: TR/TE= 5,500ms/32.5ms, matrix 256 x 256, field of view (FOV) 17.5 

mm x 17.5 mm, 48 consecutive (no gap) slices of 0.3 mm, RARE factor of 8, and 2 

averages.  Then, an adapted gradient echo echo-planar imaging protocol [338] was 

used for functional image acquisition TR/TE=2,840 ms/18 ms, FOV 17.5 mm x 17.5 

mm, matrix 96 x 96, in-

0.1 mm inter-slice gap. Once the scanning protocol was completed, a 1mg/kg 

Atipamezo

administered to reverse the effects of medetomidine. 
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2.3. Data processing 

All datasets were brain extracted using FSL [FMRIB (Oxford Centre for Functional 

MRI of the Brain) Software Library; http://www.fmrib.ox.ac.uk/fsl, [461], [462]]. 

Preprocessing of rsfMRI data was performed with single-session pICA (Probabilistic 

Independent Component Analysis) with the MELODIC interface of FSL 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC), following an adapted procedure of 

Bajic and colleagues [316]. This preprocessing consisted of motion correction with 

MCFLIRT [461], high-pass temporal filtering (> 0.01 Hz) and registration to the 

anatomical reference image set (TurboRARE images) which was registered to an in-

house mouse brain template. A threshold of p<0.05 was applied to the z-scores 

spatial maps of the independent components provided by MELODIC, before being 

manually classified into signal or noise, based on information offered by 

independent component spatial maps, power spectra and time series [327]. In order 

to achieve the cleaning of data, the components classified as noise were regressed. 

Following data denoising, a 0.3 mm full-width half maximum (FWHM) Gaussian 

kernel was applied for spatial smoothing.   

Several brain ROIs were selected for functional connectivity analysis. Cortical 

regions include the primary somatosensory cortex (S1), the secondary 

somatosensory cortex (S2), primary and secondary motor cortex (M1/2), the visual 

cortex (VC) and the auditory cortex (AC). Subcortical nodes are the caudate putamen 

(CPu) and the thalamus (Th). Moreover, several regions of the default mode network 

(DMN) were extracted: the entorhinal cortex (EntC), prelimbic cingulate (Cg), the 

rostral dorsal prelimbic cortex (PrL), the retrosplenial granular and dysgranular 

cortex (RSG/RSD), the globus pallidus (GP), the hypothalamus (Hyth) and the 
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hippocampus (Hp). The DMN is regarded as the basal activity network of the brain 

[463]. 

Group analysis was conducted by using a customized version of FSLNets (v0.6; 

www.fmrib.ox.ac.uk/fsl) in five main steps: 1) Averaging of time series in each ROI; 

2) Calculate full Pearson correlation between pairs of ROIs 3) Transformation of 

Pearson correlation r values to z-score by applying Fisher transformation to 

normalize data 4) Calculate group mean values for each correlation 5) Build 

matrices representing z-score values between pairs of nodes (i.e. regions).  

2.4. Analysis of age profile of functional connectivity 

To construct the age profile of the functional connectivity, we followed two 

strategies. As the first approach, we plotted the mean correlation coefficients versus 

time for each single measured temporal point (2, 3, 5, 6, 8, 9, 12 and 13 months of 

age). Alternatively, we plotted the mean correlation coefficients versus time, 

averaging the two temporal data sets for each group of animals studied (each group 

was scanned twice in consecutive months), thus resulting in 4 temporal points at 2.5 

(averaging month 2 and 3 for animal group 1), 5.5 (averaging month 5 and 6 for 

animal group 2), 8.5 (averaging month 8 and 9 for animal group 3) and 12.5 

(averaging month 12 and 13 for animal group 4) months. 

2.5. Statistical analysis 

Prism X.0 (Graphpad Software, San Diego, CA) was used for the statistical analyses. 

D’agostino-Pearson normality test was performed to assess the distribution of data 

for each network or cross-correlation of interest. In case data was normally 

distributed for all groups, an analysis of the variance for repeated measures 
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(ANOVA) was performed, followed by a two-tailed unpaired t-test. Otherwise, the 

non-parametric Kruskal-Wallis test was first conducted followed by Mann Whitney 

test for pairs of groups. Statistical significances were set at p<0.05 (*), p<0.01(**) 

and p<0.001(***). 

3. Results 

3.1. Whole-brain networks 

Color-coded matrices from months 2 to 13, showing the z-scores corresponding to 

interactions between different brain regions, separately analyzed for the left and 

right hemisphere, are presented in Fig. 5.1. In a first visual inspection, the overall 

correlation is found to increase from month 2 to month 8 as indicated by the color 

change in the matrices. After month 8, the connectivity strength decreased again 

progressively until the last time point at 13 months. Nevertheless, temporal changes 

are not completely linear and fluctuations of z-scores from one time point to the 

next are considerable when separately analyzing different nodes. To distinguish 

potential patterns for individual networks, we followed two approaches. First, we 

decided to group the connectivities in four groups: 1) all intra-hemispheric 

connectivities of the left hemisphere, 2) all intra-hemispheric connectivities of the 

right hemisphere, 3) all inter-hemispheric connectivities, and 4) all connectivities 

within the whole brain (grouping all 2268 calculated connections together). The 

averaged z-scores of each of these network groups were plotted versus time (Fig. 

5.2A). In addition, we considered that the temporal gap of 1 month between some 

experimental points is too narrow to attribute changes in correlation to an aging 

effect, and that variability observed in such short periods could be due to many  



 
 
 
 
 
 
 
 

212 | Chapter 5 

  

F
ig

u
re

 5
.1

. R
es

ti
n

g
 s

ta
te

 f
M

R
I 

fu
ll

 c
o

rr
el

a
ti

o
n

 m
a

tr
ic

es
 o

f 
th

e 
in

te
r-

 a
n

d
 i

n
tr

a
-h

em
is

p
h

er
ic

 c
o

n
n

ec
ti

vi
ti

es
 f

o
r 

1
5

 R
O

Is
 o

f 
th

e 
b

ra
in

. Z
-s

co
re

 v
a

lu
es

 o
f 

cr
o

ss
-c

o
rr

el
a

ti
o

n
s 

a
re

 p
lo

tt
ed

. T
h

e 
8

 m
a

tr
ic

es
 c

o
rr

es
p

o
n

d
 t

o
 2

, 3
, 5

, 6
, 8

, 9
, 1

2
 a

n
d

 1
3

 m
o

n
th

s 
o

f 
a

g
e 

o
f 

h
ea

lt
h

y 
C

5
7

B
L

/6
J 

m
ic

e.
 T

h
er

e 
is

 a
n

 o
ve

ra
ll

 c
o

n
ti

n
u

o
u

s 
in

cr
ea

se
 o

f 
th

e 
p

o
w

er
 o

f 
co

rr
el

a
ti

o
n

 u
n

ti
l 

m
o

n
th

 8
, 

in
d

ic
a

te
d

 b
y 

th
e 

co
lo

r 
ch

a
n

g
e 

in
 t

h
e 

L
U

T
. 

 T
h

e 
co

rr
el

a
ti

o
n

 p
o

w
er

 d
ec

re
a

se
s 

a
g

a
in

 f
ro

m
 m

o
n

th
 8

 u
n

ti
l 

m
o

n
th

 1
3

 
(p

<
0

.0
0

1
).

  
T

h
e 

1
5

 r
eg

io
n

s 
o

f 
in

te
re

st
 a

re
: 

S1
, 

p
ri

m
a

ry
 s

o
m

a
to

se
n

so
ry

 c
o

rt
ex

; 
S2

, 
se

co
n

d
a

ry
 s

o
m

a
to

se
n

so
ry

 c
o

rt
ex

; 
M

1
/2

, 
p

ri
m

a
ry

 
a

n
d

 
se

co
n

d
a

ry
 

m
o

to
r 

co
rt

ex
; 

V
C

, 
vi

su
a

l 
co

rt
ex

; 
A

C
, 

a
u

d
it

o
ry

 
co

rt
ex

; 
C

P
u

, 
ca

u
d

a
te

 
p

u
ta

m
en

; 
T

h
, 

th
a

la
m

u
s;

 E
n

tC
, e

n
to

rh
in

a
l 

co
rt

ex
;  

C
g

, p
re

li
m

b
ic

 c
in

g
u

la
te

; P
rL

, r
o

st
ra

l d
o

rs
a

l p
re

li
m

b
ic

 c
o

rt
ex

; R
SG

/R
SD

, r
et

ro
sp

le
n

ia
l 

g
ra

n
u

la
r 

a
n

d
 d

ys
g

ra
n

u
la

r 
co

rt
ex

; 
G

P
, 

g
lo

b
u

s 
p

a
ll

id
u

s;
 H

yt
h

, 
 h

yp
o

th
a

la
m

u
s;

 H
p

, 
h

ip
p

o
ca

m
p

u
s.

 “
l”

 p
re

fi
x 

in
d

ic
a

te
s 

le
ft

 
h

em
is

p
h

er
e,

 “
r”

 p
re

fi
x 

in
d

ic
a

te
s 

ri
g

h
t 

h
em

is
p

h
er

e.
 



 
 
 
 
 
 
 
 

Chapter 5 | 213 

 

 

 

 

 

 

 

 

Figure 5.2. Averaged z-score values of left and right intra-hemispheric, inter-hemispheric and 
whole-brain connectivities. A) z-score values, analyzed at the 8 experimental time points (2, 3, 
5, 6, 8, 9, 12 and 13 months). The power of correlation increases up to month 8 and then 
decreases again until month 13 in a fluctuating way. B) z-scores of equally spaced pairs of time 
points (averaged z-scores for 2-3, 5-6, 8-9, 12-13 months, see Methods section). Smoothed 
temporal trends show an inverse-U shape curve peaking at month 8.5. Error bars indicate SD. 
p<0.001(***). 

 

other experimental or biological factors. Thus, a smoothing of the temporal series 

was achieved by averaging data with temporal gaps of 1 month (i.e. the pair of scans 

for each group of animals), resulting in a reduction of the eight measured time 

points into 4 evenly spaced time points (3-4 months of temporal resolution, see 

methods section. In this way, better interpretable, smoother trends for aging effects 

were obtained (Fig. 5.2B). As shown in Fig. 5.2B, the mean z-score of both, right and 

left intra-hemispheric groups of correlations, as well as inter-hemispheric and 

whole-brain connectivities become increasingly stronger from month 2.5 to month 

8.5. The increase of the power of correlation from one time point to the next is 

highly significant for all these periods (p<0.001). After peaking at month 8.5, there is 
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a highly significant decrease in connectivity until the month 12.5 (p<0.001 in all 

cases). 

3.2. Grouping the whole brain into connectivity subsets 

In a further analysis, the brain nuclei were grouped in 3 regions encompassing 1) 

the cortical network (CN) consisting of M1/2, S1, S2, AC, and VC, 2) the subcortical 

network (SN) consisting of CPu and Th, and 3) the Default Mode Network (DMN) 

(Hyth, EntC, Cg, PrL, RSG/RSD, GP, and Hp). Then, the interactions among these 

three different networks were studied.  

 

 

 

 

 

 

 

 

 

Figure 5.3. Inter-network connectivities. Upper row: z-scores of connections between cortical 
network (CN), subcortical network (SN) and default mode network (DMN). There is a 
significant increase of connectivity until 8.5 months, followed by a decrease until month 12.5 in 
all cases. Lower row: Schematic representation of the strength of correlations over time. Each 
graph, from left to right, represents a specified age (2.5, 5.5, 8.8 and 12.5 months). Solid line, z-
score>0.41; Dash-dotted line, z-score>0.33; Dotted line, z-score>0.25; No line, z-score<0.25. CN-
SN and SN-DMN connections show a higher correlation over time than the CN-DMN connection 
(p<0.001). Error bars indicate SD. p<0.05 (*) and p<0.001(***) 
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The connectivity significantly increased for all three inter-network connections: CN-

DMN, CN-SN, DMN-SN networks from month 2.5 to 8.5 (p<0.001 CN-DMN, p<0.001 

CN-SN, p<0.001 DMN-SN), as presented in Fig. 5.3. From the age of 8.5 months, a 

continuous decrease of the inter-network correlations was seen between month 8.5 

and month 12.5. Interestingly, the connectivity strength reached at month 8.5 for 

CN-SN and DMN-SN networks was stronger than that for the CN-DMN (p<0.001 at 

month 8.5). 

3.3. Analysis of sensorimotor and default mode networks 

In the final step, we assessed the individual patterns of connectivities between 

individual nuclei within the sensorimotor network and the DMN, respectively. A set 

of the stronger connections within the sensorimotor network is presented in Fig. 

5.4.  

 

 

 

 

 

 

Figure 5.4. Mean z-score values of cross-correlations of pairs of ROIs of the sensorimotor 
network over the life span period (2.5 months, 5.5 months, 8.5 months and 12.5 months). A 
significant increase in connectivity was seen from month 2.5 to month 8.5 in S1-Th and CPu-Th 
connections. The CPu-M1/2, CPu-Th and S1-Th correlations undergo a decrease from month 8.5 
to month 12.5. Error bars indicate SD. p<0.05 (*). 
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All connectivities share the pattern of the largest z-score values at 8.5 months except 

the interaction between S1 and S2 which reaches its maximal strength already at 5.5 

months. This inverse U-shape pattern is most pronounced for the connections 

M1/2-S2, S1-Th, and CPu-Th. In contrast, the connections M1/2-S1, S1-CPu, S2-CPu 

have only a very weak, non-significant inverse U-shape during the whole aging 

process. Interestingly, the z-score values at 12.5 months reach low connectivity 

strength well comparable to those at 2.5 months. 

Plotting the mean correlation of all interactions of the DMN over time leads to a 

clear inverse U-shape curve, significantly increasing step-wise from month 2.5 to 

month 5.5 and month 8.5 followed by a significant decrease to month 12.5 

(p<0.001;p<0.05; p<0.001 respectively) (Fig. 5.5, top left). Performing an analysis of 

connections between the individual nodes of the DMN, temporal trends show mostly 

the same pattern, but are more variable than for the sensorimotor network (Fig. 

5.5). Most DMN-internal interactions present the strongest correlation at month 8.5, 

being significantly different from month 2.5 (GP-Hp, p<0.05; Cg-Hyth, p<0.005; 

Hyth-Hp p<0.05) and show a decline from month 8.5 to month 12.5 (Cg-Hyth, Hyth-

GP and the PrL-Hp; p<0.05). A highly significant U-shape pattern of the thalamus 

(Th) was seen with both Hyth and Hp. Both correlations undergo an increase until 

month 8.5 (p<0.05), but, while the Hp-Th connection is somehow sustained after 

month 8.5, the Hyth-Th connection undergoes a considerable decline from that point 

until month 12.5. The Cg-PrL interaction remained constant over time with strong 

connectivity (z-score mean = 0.50). Contrary to the sensorimotor network curves, 

some DMN-internal connectivities do not decrease at 12.5 months to the low z-score 

values at 2.5 months, but stagnate at higher values, although clearly lower than at 

8.5 months. This is most pronounced for some connections of the hippocampus: GP-

Hp, Hyth-Hp, Hp-Th. 
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Figure 5.5. Default-mode network connectivity. Top left: mean z-score value of all interactions 
between DMN regions is represented. All other diagrams:  Cross-correlation of pairs of ROIs of 
the DMN is represented. An increasingly strong interaction is seen in month 8.5 comparing to 
2.5 in GP-Hp, Cg-Hyth, Hyth-Hp, Hp-Th and Hyth-Th correlations. There is also a decrease of 
correlation from month 8.5 to month 12.5 in Hyth-GP, Cg-Hyth, PrL-Hp and Hyth-Th. An inverse 
U-shape curve is typically seen.  Error bars indicate SD. p<0.05 (*), p<0.01(**) and p<0.001(***). 

 

3.4. Condensed aging effects of the functional networks 

Finally, we have studied the average correlation of a selected node with all other 

nodes across the brain, reflecting the average connectivity strength of this particular 
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node over time. In Fig. 5.6, this behaviour pattern is presented for all cortical nodes 

(Fig. 5.6, left), both subcortical nodes (thalamus and caudate putamen; Fig. 5.6, 

centre) and for all nodes of the DMN (Fig. 5.6, right). In all three groups, the average 

connectivity strength shows an almost identical U-shape pattern with the maximal 

values at 8.5 months of age. Only the entorhinal cortex in the DMN group (Fig. 5.6, 

right) deviates from this pattern and shows an irregular pattern. From these curves, 

the prominent change in functional connectivity strength across progressing aging is 

clearly seen. Thus, the subcortical functional connectivity strength loses 36% of its 

maximal value at 12-13 months of age in thalamus and caudate putamen. 

 

 

Figure 5.6. Aging effects of functional connectivity for individual cortical, subcortical and DMN 
nodes. Mean z-score values of correlations of each ROI are represented. All nodes show an 
inverse U-shape behaviour with a pronounced maximum of z-scores at 8.5 months of age, 
followed by a substantial drop to low values at 12.5 months of age. Only the entorhinal cortex 
(right diagram; DMN) shows a deviating behaviour with an early maximum at 5.5 months. 

 

 In the cortical node group, the loss of functional connectivity strength at 12-13 

months varies between 20% for the auditory cortex (AC) and 50% for the visual 

cortex (VC). The other cortical nodes have a drop of 33%.  In the DMN, the drop of 

functional connectivity is also strongly expressed. While RSG/RSD and Hp show a 

24% and 22% drop respectively, GP, Cg and Hyth experience a much stronger loss of 
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38% (GP), 40% (Cg), and 45% (Hyth). The strongest effect is noted for the rostral 

dorsal prelimbic cortex (PrL) with a massive 70% loss in functional connectivity 

strength at 12-13 months of age. 

4. Discussion 

In the present study we have carefully investigated the age dependence of functional 

networks by systematic analysis of the resting state fMRI data. The age between 2 

and 13 months of age was studied, thus covering the most relevant life span phase 

typically used in chronic long-term experimental mouse models on cerebral diseases 

and lesions. We have particularly focused on the sensorimotor networks and the 

default mode network (DMN) as these are most often the relevant functional 

networks investigated for functional deficits during brain diseases and for functional 

improvements during therapeutic strategies. Thus, we have unraveled an inverse U-

shape behaviour of the functional network strength with aging, reaching the 

maximal strength at 8-9 months of age for both, the sensorimotor networks and the 

DMN. 

The age dependence curve shows similar functional network values shortly after 

weaning of 2 months of age and at progressed aging at 13 months of age, crossing 

the maximum strength at 8-9 months. Cortical and subcortical groups presented an 

overall drop of approximately 33% in network strength when going from 8 to 13 

months, with the exception of only a few correlations such as the M1/2-S1 or the Cg-

PrL connections which remained rather constant along the whole temporal series. It 

should be also highlighted that the S1-S2 connection peaked already at month 5.5, 

unlike the rest of all the studied interactions. In the DMN, the variability in network 

strength was more pronounced, varying from 24% for RSG/RSD, GP, and Hp to 70% 

for the rostral dorsal prelimbic cortex (PrL). 
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Two earlier studies dealing with mouse models of Alzheimer’s disease and focusing 

on the age dependence of the disease reflected in functional networks changes had 

also included WT litter mates in their age dependence studies [338], [464]. Although 

the age dependence of the healthy litter mates in those studies was not discussed 

explicitly in both reports and their focus was primarily on the AD models, 

information about the age dependence of the resting state fMRI data can be derived 

from their data presentation. Grandjean et al. [338] had included an age range from 

1 to 21 months at variable step sizes, including an age range similar to ours. Careful 

analysis of the functional networks of the healthy litter mates was limited to the 

early life phase and data had been recorded in isoflurane anesthesia, different from 

the present medetomidine-isoflurane mixture, which may affect the functional 

network results. But from the examples listed in the report of Grandjean and 

colleagues, maximum connectivity strength appears to occur between 5 to 8 months 

of age for the healthy litter mates which agrees well with our present results. In the 

report by Shah et al. [464], quantitative analysis of the hippocampus showed a slight 

increase in connectivity till month 8, and for the prefrontal network a similar 

increase was reported from 3 to 7 months. Considering the rather low level 

information of the age dependence of the healthy litter mates in these two studies, 

the agreement with our inverse U-shape curve peaking at 8-9 months is very good. 

A few recent studies on aging dependence of functional networks in healthy human 

subjects [465], [466] point also to a general inverse U-shape of functional network 

strength. These authors typically compared two or three age groups, defining them 

as adolescent, adult and aged healthy human subjects where the age span within one 

group was rather widely defined. These studies confirm our findings in mice that the 

functional connectivity strength increases from early life, reaches a maximum to 

descend again during progressed aging. Thus, Bo and colleagues [465] focusing on 
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the cognitive and motor networks, found an equivalent inverse U-shape behavior for 

both networks, peaking at the young adult group, aged 18-33 years in their 

investigation.  

Our study shows how functional connectivity (FC) increases continuously from the 

second month of life until month 8-9 in the life span of mice, from where a 

continuous decrease in FC takes place until month 12.5. Although the strength of the 

FC is variable, the inverse-U shape is robust throughout the whole brain. Underlying 

reasons for this age dependent behavior of the functional networks are not 

understood but a relationship with structural network changes has been considered. 

During the whole life span, a change of the integrity of white and gray matter 

content has been reported. Thus, in a study focusing on the structural brain 

development of young mice, we recently reported a continuous myelination increase 

in healthy mouse brain up to six months of age with parallel cortical thinning, clearly 

indicating an ongoing morphological change during this period of mouse brain 

adolescence [467]. In a study on structural brain networks with 484 healthy 

subjects aging between 5 and 85 years old, Douaud and colleagues described an 

inverse U-shape pattern [468]. In their study, they revealed how certain regions of 

the brain thrive in a late stage of adolescence till structural connectivity peaked at 

approximately 40 years of age, followed by a decrease during aging. With the 

combined protocol of diffusion spectrum imaging (DSI) and resting state fMRI, 

Green et al. [334] could show dramatic functional changes without structural 

changes in mouse models of tauopathy. The same authors moreover reported that 

the parallel decreases of structural and functional networks strength after stroke 

were decoupled when a stem cell treatment to the stroke was included in the 

experimental protocol [469]. Thus, it will be of particular interest in future studies 

to coregister structural and functional networks using a combined protocol of 
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diffusion spectrum imaging (DSI) and resting state state fMRI to unravel whether 

structural and functional network changes develop in parallel with healthy aging or 

whether they may also become decoupled at a certain point. Parallel to structural 

alterations, hemodynamic parameters may also contribute to the observed age 

dependence decrease of functional connectivity. Thus, Balbi and colleagues studied 

the age dependent changes of microcirculation in mouse brain [470]. Their most 

important finding was that neurovascular coupling becomes impaired after eight 

months already – where also the maximal functional connectivity, observed by us, 

started to decline - while no change of cellular composition of the neurovascular 

coupling or impaired Ca2+ reactivity was found.  

We believe that our studies have an important consequence for the design, 

performance and analysis of future longitudinal rsfMRI studies in mice. As we have 

seen, there is a strong effect of aging in mouse connectome, even for temporal 

periods as short as a few months. Establishing 8-9 months as the age at which 

connectivity starts to decline and taking into account the progression with age, will 

benefit to avoid confounds of aging effects underlying the particular aspects of 

disease-caused functional alterations of slow, long-term functional regeneration 

processes. In particular, it is between the 8th and 12th month of life where the 

mouse begins to show signs of deterioration. The first senescent changes take place 

presumably between 10 and 15 months of age, at 15 months approximately the 

mouse loses its fertility, and at 18 months aging biomarkers are considered evident 

[471]. On the other hand, during the early life span till 8-9 months of age, a 

continuously increasing strength of the functional networks may partly cover 

decreases caused by cerebral diseases and may lead to overestimation of 

therapeutic effects during apparent “recovery” of functional networks. Thus, we 

have planned to extend the study on stroke induction at variable age in mice to 
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clarify stroke induced functional connectivity alterations as a function of age and to 

decipher whether functional network derangements after stroke are more severe in 

aged or young mice. 

5. Conclusions 

Functional connectivity strength of the sensorimotor and default mode networks in 

the mouse increases from month 2, continuously reaching the maximum at 8 to 9 

months of age. The decrease of the functional network strength after 8-9 months 

reflects the progressing aging and reaches low values at 12-13 months of age 

equivalent to those in the early adolescent phase at 2-3 months. In summary, the 

functional network strength follows a clear inverse U-shape curve during 

adolescence to maximum at adulthood and progressed aging. 
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In this work different applications of ultra-high field magnetic resonance imaging 

have been explored for the study of neurodegenerative diseases. Starting by the 

innovative imaging of organotypic cultures, we followed with multiparametric 

anatomical studies of in vivo mouse models of different neurological disorders, to 

finish with the application of the promising field of resting-state functional MRI. Two 

main objectives were set at the beginning of the work, namely: 1) to develop 

imaging protocols to evaluate imaging parameters for the non-invasive assessment 

of myelin content in models for the study of remyelination; 2) to understand the 

impact of demyelination and remyelination in the CNS at a functional and 

anatomical level.  

It is undoubted that myelin has been the cornerstone of this work. Even though 

myelin pathology takes place in several disorders, as reviewed in the introduction 

section, multiple sclerosis is the quintessential demyelinating disease, due to the fact 

that myelin damage triggers a countless number of pathological processes and due 

to its social and economic impact. After performing substantial advances by means 

of immunomodulating therapies, scientific research is targeting at remyelination as 

a neuroprotective approach for this pathology. This strategy has shown promising 

results in preclinical models, giving rise to a bunch of drugs as potential 

remyelination therapeutics that so far, have not yet been approved for human use.  

The inaccurate evaluation of therapies or the poor current understanding of 

demyelinating and remyelinating processes might be responsible in part for such 

lack of translation. Thus, in this work, we addressed these issues by using first 

organotypic cultures and then the cuprizone murine model of myelin-related 

pathology. Tough conceptually feasible, we have encountered several practical 

obstacles in our endeavour to image organotypic cultures. Currently, quantification 

of myelin in organotypic cultures is far from being simple and straightforward, 
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making highly difficult its establishment as a robust in vitro model for non-invasive 

studies. At this moment, our approach to quantify myelin content through MRI has 

not succeeded, although progress has been made and work continues in this 

direction. In this context, it is our belief that the future of organotypic culture as a 

model for the longitudinal evaluation of remyelination therapies highly depends on 

the development of robust and reproducible molecular imaging techniques, either 

by MRI or by any other imaging technique, which implies the development of 

molecular imaging probes specific and sensitive to myelin. Further work is in 

progress in this regard in our laboratory. 

Moving into in vivo studies, the cuprizone model is maybe the most widely used 

model for the evaluation of remyelinating therapies, owing to its reproducibility, 

simplicity and the predictive fashion in which myelin pathology takes place. 

Moreover, while myelin pathology is extensive in this model, other pathological 

processes (e.g. axonal loss) take place in a lower extent, enabling the evaluation of 

specific therapies to myelin in complex scenarios. In this way, we have revealed the 

high sensitivity and specificity of T2-weighted imaging, T1-weighted imaging and 

radial diffusivity to myelin pathology in the cuprizone mouse model at high fields. 

Particularly interesting has been the sensitivity and specificity offered by T2-

weighted imaging, even able to detect mild remyelination after the demyelinating 

insult. Of note, these parameters show different temporal patterns of evolution, 

which might indicate that they are affected in a different extent by other phenomena 

rather than myelin contribution, and therefore can be sensitive to other pathological 

events taking place in the cuprizone model.  

Testing these parameters in other preclinical models of neurodegenerative diseases 

might provide further evidence of the suitability of the parameters to monitor 

myelin in complex scenarios where multiple pathological processes take place 
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concomitantly. To achieve this goal, we have made use of a mouse model of amyloid 

deposition and a model of tauopathy. In these models, neurodegeneration, axonal 

loss and all in all, profound damage in the microstructure of the brain is expected, as 

reported in the literature. In this setting, radial diffusivity has shown sensitivity to 

non-myelin related pathology in the white matter tracts of the brain, for which T2w 

and T1w imaging have shown to be insensitive. Analysing retrospectively the results 

of the cuprizone model study, with this fact in mind, we found a plausible 

explanation for the fact that RD showed poor sensitivity for remyelination (which in 

turn was observable by T1w and T2w imaging) following the peak of demyelination 

(week 5), indicating that further damage to tissue may occur apart from myelin loss 

in this model. 

Therefore, the multiparametric studies conducted might indicate that in absence of 

substantial pathological events apart from demyelination T2w imaging, T1w 

imaging and RD show a good specificity and sensitivity for the detection and 

quantification of this phenomenon. Nevertheless, when further pathological 

processes are present in the brain, RD might lose sensitivity for it. For this reason, 

we do believe that the conduction of multiparametric studies, rather than studies 

based on a unique parameter, can provide further insight into the state of the white 

matter tracts of the brain beyond myelin pathology, as exhibited in Table 6.1. 

It is our belief that T2w imaging is highly robust for the evaluation of myelin in the 

cuprizone mouse model at high magnetic fields, at which, in the end, remyelination 

therapies are usually tested. The excellent performance of T2w imaging has been 

confirmed when the effect of the potential remyelinating therapeutic clemastine was 

evaluated, being able to reveal the remyelinating effect of the drug. Therefore, a 

pragmatic approach as the one carried out in that study could only consist on T2w 

imaging to assess myelin content in the cuprizone mouse model. However, a more 
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robust conclusion or even the evaluation of further tissue damage might be achieved 

in case T1w and RD are also registered together with T2W, mainly in other models 

different to the cuprizone mouse model. 

 

Table 6,1. Multiparametric MRI as a tool for characterization of white matter tracts. 

Condition ΔT2w ΔT1w ΔRD 

Healthy tissue - - - 

Demyelination    

Further damage - -  

 

Before moving forward, we would like to point out that T2w, T1w and RD might not 

be useful to evaluate the efficiency of a given therapy in clinical trials or other 

preclinical models. Indeed, they have shown to be sensitive to non-myelin related 

pathology observed in demyelinating plaques of patients, not providing an accurate 

measure of the myelin content. However, we cannot discard that in absence of a 

certain pathological event, such as inflammation, mainly the normalization of T2w 

signal can provide a semiquantitative measure of myelin. Thus, being aware of the 

sensitivity of these parameters to other pathological events, the robustness of their 

applicability in other pathologies is still a matter of study. Of note, it is highly 

advisable that specific staining of myelin with Luxol fast blue or other techniques is 

carried out in preclinical models before assuming the validity of these parameters to 

evaluate myelin. In other words, we are well aware that T2w imaging is a powerful 

tool for the study of myelin in the cuprizone mouse model, but that its full validity is 
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not readily translatable to human multiple sclerosis. Still, it is a very powerful tool 

for the development of novel therapies in animal models of the disease, which is not 

a minor issue. 

On the other hand, regarding myelin content on grey matter, it has to be considered 

that grey matter is a low myelinated tissue, and pathology in it might be highly 

variable and too complex to specifically quantify myelin. As observed in the mouse 

models of Alzheimer’s disease, abnormalities in the grey matter are extensive and 

probably, poorly correlated with myelin, due to the accumulation of neurofibrillary 

tangles, amyloid plaques or cell loss. 

It is also worth pointing out that diffusion-weighted imaging has shown a great 

sensitivity to detect microstructural abnormalities both in grey and white matter in 

Alzheimer’s disease models. As discussed in previous chapters, although the poor 

specificity of DTI parameters has been widely reported in the literature, the use of 

DTI as a first approach to detect abnormalities might be highly considered.  

Nevertheless, we do considerer that developing specific imaging markers, not only 

to myelin but also different pathological events such as β-amyloid plaques, will be of 

utmost importance to monitor diseases and evaluate therapies in humans and 

preclinical models. In fact, to us, the use of MRI in preclinical imaging should be 

oriented towards the substitution of histological studies and performance of 

longitudinal studies, entailing a substantial reduction in the use of animals and a 

deeper understanding of pathological processes. Moreover, the contribution of 

machine learning approaches for imaging analysis should not be underestimated for 

the diagnosis and detection of subtle abnormalities in humans and preclinical 

models. 
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In this context, the use of higher magnetic fields in humans (e.g. 7 Tesla) might give a 

boost to the imaging sensitivity and give rise to a better understanding of diseases. 

Nevertheless, we do believe that a vast progression would be needed to tackle the 

complexity and challenges that using such a high magnetic field involve and achieve 

the implementation of the system for clinical use on a daily basis. Additionally, even 

the side-effects of being exposed at ultra-high field are still unresolved so far. 

Parallel to brain anatomy related studies and, as aforementioned, understanding of 

the impact of demyelination and remyelination at a functional level can provide a 

further insight into these processes, for which reason functional imaging of animal 

models of myelin pathology has been set as an important objective in our work. 

After setting up a protocol for the performance of resting-state functional MRI (rs-

fMRI) at our laboratory, we conducted a longitudinal study in which an evident 

trend throughout the study was observed: increased connectivity at the onset of 

demyelination, followed by reduced connectivity at the peak of demyelination, and a 

recovery of connectivity strengths during the following weeks, a process that was 

boosted when treating animals with clemastine. Interesting findings of these studies 

were, on the one hand, the coincidence of observed trends with those reported for 

other pathologies and on the other hand, the degree of correlation of functional 

imaging with the reported behavioural test conducted in this animal model. In brief, 

periods of hyperactivity are followed early after the onset of the pathology, later 

followed by a reduction in the activity as the disease progresses. Moreover, the 

observation that spontaneous or therapeutically enhanced remyelination triggers 

the recovery of connectivity supports the importance of developing therapies that 

promote remyelination. It has to be taken into consideration that even though 

demyelination is the most evident pathological process going on in the cuprizone 

model, the administration of toxic compound might also alter different aspects of the 
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organism (of the brain) that finally could also contribute to a different resting-state 

condition.  

It is our belief that the capacity observed for rs-fMRI at high-field to detect this 

temporal pattern of evolution in the cuprizone mouse model is of great interest for 

the evaluation of therapies, further supported when combining functional with 

anatomical (T2w, T1w and RD) imaging. By carrying out an experimental strategy 

that includes the acquisition of longitudinal multiparametric anatomical imaging 

along with functional imaging we have been able to provide a full characterization of 

the effects of demyelination and remyelination and to highlight the potential 

benefits of the remyelinating therapy based on the use of clemastine. 

Interestingly, we have been able to observe that healthy mice show an increasing 

connectivity during the duration of the study, revealing increased myelination of 

healthy individuals with maturation revealing, on the one hand, the high sensitivity 

of this approach to detect small changes in myelin naturally occurring in maturing 

healthy individuals, and on the other hand, calling for the study of myelin changing 

in aging individuals including both maturing from youth to adulthood, and decline 

form adulthood to seniority. This study was indeed performed as part of our 

research. 

Certainly resting-state fMRI has also been sensitive to detect the effect of aging in 

mouse brain. In Chapter 5 of this work, we report an inverse U-shape curve in 

connectivity observed in mice aging from 2 months to 13 months of life, peaking at 

month 8. This natural trend is very important and should be taken into account for a 

complete study of disease-related or therapeutic-related effects on connectivity, to 

avoid false assignation of temporal trends to what it is normal in healthy subjects 

that undergo natural processes concomitant to aging. 
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Despite resting-state functional MRI has been revealed as a powerful tool for the 

study of brain function, results obtained with this technique should be taken 

carefully. In the cuprizone mouse model, the hyperconnectivity observed at the 

onset of the disease might be a compensatory effect to the produced damage in the 

brain. Nevertheless, the interpretation of the peak observed at month 8 in the aging 

study might be more difficult to understand. At this point there are two possible 

situations: 1) The brain is making an effort to maintain existing function, as 

observed in the cuprizone model; 2) The brain is fully mature and functionally 

optimal, and declines from this point on. Certainly, it is difficult to answer this 

question. Nevertheless, it seems reasonable to attribute the drop in connectivity 

observed after month 8 to an impaired function, as observed in the cuprizone model 

from week 2 to week 5. Hence, resting-state results are sometimes hard to interpret. 

BOLD response might be affected by several factors that under pathology are not 

considered or predicted. For this reason, we do consider that extensive research in 

healthy mice and characterization of mouse brain function could substantially 

improve the interpretation of data. 

However, it is notorious the contribution that resting-stage fMRI has done in clinical 

and preclinical models, mainly due to its capacity to detect abnormalities under 

pathological conditions. During the last years, great progress has been made in 

preclinical models, by developing tools for analysis and characterizing resting-state 

networks mainly in rodents. The achievement of the standardization of data analysis 

approaches, acquisition and anaesthetic protocols would be of utmost importance 

for reproducibility of the technique, and a very recently published work stress these 

points in deep [472]. Actually, the analytical approach carried out can influence the 

obtained results and interpretation of data.  
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Even though we have made a contribution to develop imaging protocols and 

characterize demyelination and remyelination, it is interesting to highlight that 

apart from making progress in the understanding of the cuprizone model, it would 

be also interesting to develop novel animal models that could better mimic human 

multiple sclerosis hallmarks, and improve the translation of diagnostic and 

therapeutic tools into the clinics. We consider that the cuprizone model is a model of 

great use for the evaluation of therapies and understanding of myelin pathology. 

Nevertheless, the complexity of multiple sclerosis and the role that the immune 

system plays in this disease should not be underestimated. The EAE model, whose 

pathology might be more similar to the human MS, is not predictable and 

reproducible enough and the evaluation of therapies is challenging. Indeed, the lack 

of more complete animal models might be among the potential explanations for the 

poor efficiency that treatments show in clinical trials.  

Therefore, in this work started in October 2016 we have provided further evidence 

for the interest of multiparametric MRI for the detection of pathological processes 

and assessment of myelin content that, combined by rs-fMRI, would result in a deep 

and complete view of the brain state in these pathologies. We hope that this work 

can contribute to the development of remyelinating therapies, not only in multiple 

sclerosis but also in other pathologies were demyelination causes damage. 
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1. Quantification of myelin in organotypic cultures by means of MRI might be 

challenging and might require the development of a thoroughly designed 

set up. 

2. T2-weighted imaging, T1-weighted imaging and radial diffusivity have 

shown a high specificity in the cuprizone mouse model at high magnetic 

field. 

3. T2-weighted imaging has exhibited the highest capacity to accurately 

monitor demyelination and remyelination processes in the cuprizone 

mouse model. 

4. Radial diffusivity has shown to be sensitive to non-myelin related 

pathology in the APP mouse model of Alzheimer’s disease, while T1-

weighted and T2-weighted have not. 

5. Diffusion-weighted imaging has shown to be highly sensitive for the 

detection of abnormalities in the mouse models used.  

6. Amyloid plaques lead to volume loss and white matter and grey matter 

abnormalities in mouse brain, but not to myelin loss. 

7. Tau protein might not cause white matter damage and atrophy in the 

mouse brain, while grey matter damage might take place. 
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8. Cuprizone administration to mice results in connectivity and function 

abnormalities during demyelination, which are reversed with 

remyelination. 

9. Clemastine enhances remyelination and leads to the recovery of functional 

connectivity in the cuprizone mouse model 

10. Brain connectivity shows an inverse U-shape curve pattern throughout 

mouse life, peaking at month 8 of life. 

11. Combination of functional and multiparametric anatomical imaging for the 

evaluation of myelin pathology might be of interest for the evaluation of 

remyelination therapies. 
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