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Summary 

There is an urgent need for the development of effective antibacterial coatings to 

cope with more and more resistant bacterial strains in medical environments, and 

particularly to prevent nosocomial infections following bone implant surgery. There 

are two main approaches to tackle this important issue: (I) directly prevent bacterial 

infection by the use of antibacterial coatings or (II) indirectly avoid bacteria 

proliferation by enhancing pre-osteoblast attachment, proliferation and 

differentiation in order to get a faster osseointegration of the implant and form the 

protective capsule, which would avoid infection, as fast as possible. 

This thesis presents different approaches for mesoporous titania film (MTF) 

functionalization with growth factors and antibiotics. Antibiotics are incorporated 

to the coating alone or by means of complex assembly in polyelectrolyte multilayers 

(PEMs). Also, bioactive ions can boost the proliferation and differentiation 

processes of pre-osteoblasts. They can be directly incorporated to the titania matrix 

or be complexed on the pore walls that have been previously functionalized with 

carboxylic groups.  

In Chapter 1, MTFs are used for gentamicin loading and delivery, and surface 

functionalization with recombinant human Bone Morphogenetic Protein 2 (rhBMP-

2). MTFs are synthesized by spin coating on top of rounded glass coverslips through 

the evaporation induced self-assembly (EISA) method. The resulting film has a 

thickness of 80 nm with pores of 5.7 nm in diameter connected by necks of 4.2 nm. 

They show a porosity of a 30.7 %, obtained by Environmental Ellipsometric 

Porosimetry (EEP). The elastic modulus the MTFs is of 25.5 ± 5 GPa, which makes 

the coating optimal for bone implants. 

Gentamicin is incorporated in the MTF pores by immersion of the porous materials 

in gentamicin solution while rhBMP-2 is adsorbed electrostatically on top of the 

MTF. Contact angle and X-ray Photoelectron Spectroscopy (XPS) measurements are 

performed to prove gentamicin loading and rhBMP-2 functionalization. An initial 

burst release of gentamicin takes place in physiological media, and the 36 % of the 

total released gentamicin is liberated, followed by a prolonged release that lasts 

weeks. Such a release profile is highly appealing for bone implants where a high 

concentration of antibiotics is necessary during implant surgery while a lower 
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antibiotic concentration is needed until tissue is regenerated. The MTF loaded with 

gentamicin and functionalized with rhBMP-2 are effective against S. aureus 

colonization and the presence of rhBMP-2 enhances MC3T3-E1 pre-osteoblastic cell 

attachment, proliferation and differentiation, which are slowed down when 

gentamicin is present. 

In Chapter 2, polyelectrolyte multilayers (PEMs) based on poly-L-lysine (PLL) and 

complexes of poly (acrylic acid) (PAA) and gentamicin have been fabricated 

applying the layer-by-layer (LbL) technique. The PEM is assembled on top of MTFs. 

Complexes are prepared by mixing PAA and gentamicin solutions in 500 mM NaCl 

at pH 4.5. The most stable complexes are obtained in these experimental conditions. 

The assembly of PLL and the complexes follows an exponential growth allowing a 

high loading of gentamicin in a 4 bilayer PEM. The PEM is stable till pH 13 meaning 

that it does not degrade at physiological pH, besides; there is a continuous release 

of gentamicin at pH 7.4. PEMs show an initial burst release of gentamicin in the first 

6 hours, which liberates 48 % of the total gentamicin, followed by a sustainable 

release lasting over weeks, where around 80 % of the total gentamicin inside the 

PEM is released. PEMs are effective in preventing the proliferation of S. aureus. 

Bacteria grown on top of the PEM is 3 orders of magnitude lower than on glass 

coverslips immersed in gentamicin, used as control. 

In Chapter 3, strontium titanate mesoporous films (SrTiMFs) with 30 % pore 

volume and a 20 % Strontium (Sr) molar content have been prepared by the EISA 

method. The resulting films have a pore diameter of 5.5 nm connected by 

bottlenecks of 3.2 nm and have a thickness of 85 nm. SrTiMFs display a large internal 

surface area available for exchange of Sr. Sr release is followed through Inductively 

Coupled Plasma Mass Spectrometry (ICP-MS) measurements. A 44 % of the Sr inside 

the titania matrix is released in the cell media within the first 8 h.  

SrTiMFs improve attachment of MC3T3-E1 pre-osteoblastic cells, which show larger 

filopodia and more elongated features than cells attached to plain MTFs. Cell 

proliferation and differentiation rates are also largely improved. Overall, Sr 

incorporation in mesoporous titania coatings can lead to an enhanced 

osseointegration at early stages of tissue formation, at day 2 the cell proliferation is 
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64 % higher if compared to cells grown on top of MTFs and the alkaline phosphatase 

(AP) activity is higher from the 5th day of osteogenic cell culture. 

In Chapter 4, inorganic−organic hybrid mesoporous silica and titania thin films with 

covalently bonded carboxylic acid groups are synthesized. Silica films are produced 

in one-step synthesis using carboxylic derivatized alkoxysilanes obtained by 

photochemical radical thiol-ene addition (PRTEA). The organosilanes are 

synthesized by clicking mercaptosuccinic (MSA) or mercaptoacetic (MAA) thioacids 

with vinyltrimethoxysilane (VTMS), using benzophenone as the photoradical 

initiator. Films are synthesized by EISA from a sol containing a mixture of 

tetraethoxysilane and different quantities of the organosilanes, without any further 

treatment after the PRTEA reaction. Titania films are synthesized in two steps; the 

sol is prepared mixing VTMS and the Ti precursor, and after film synthesis, the 

photochemical reaction with the MSA incorporates the carboxylic groups to the 

mesoporous film surface. 

Structural characterization with electron microscopy, porosimetry measurements, 

and Small Angle X-ray Scattering with two-dimensional (2D-SAXS) detection 

confirm mesoporous phases of silica films whose degree of ordering depended on 

the amount of added organosilane. The incorporation of the functional vinyl and 

carboxyl groups is shown by XPS, and the presence of the COOH groups is confirmed 

by Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The 

availability of the COOH groups for further chemical modification is demonstrated 

by DRIFTS by following the changes in the typical carbonyl IR bands during proton 

exchange and metal complexation. Pb2+ is complexed to silica films, while Sr2+ is 

complexed to titania films. Sr release experiments show a prolonged release of Sr2+ 

lasting a week which enhances proliferation and differentiation processes in the 

MC3T3-E1 pre-osteoblastic cell line. 
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Resumen 
Cada vez hay más cepas bacterianas resistentes a antibióticos y su presencia en 

entornos médicos supone un riesgo cuando los pacientes son sometidos a una 

intervención quirúrgica. Cuando una persona es sometida a una cirugía para la 

sustitución de un hueso por un implante hay riesgo de desarrollar una infección 

nosocomial y no conseguir una buena osteointegración del implante. En estos casos, 

es necesario realizar una segunda cirugía para evitar la proliferación de la infección 

en la zona donde se sitúa el implante, siendo necesaria su sustitución.  

En la actualidad, para evitar infecciones se suministran antibióticos oralmente; su 

mayor desventaja es que la concentración que llega a la zona deseada, en este caso 

el implante, es baja, y en muchos casos no es lo suficientemente alta para evitar la 

proliferación bacteriana. En este marco surge la necesidad de desarrollar 

recubrimientos antibacterianos efectivos. Hay dos rutas principales para conseguir 

una buena osteointegración del implante; (I) evitar la proliferación bacteriana 

empleando superficies antibacterianas, esta sería la forma más directa, y (II) se 

puede evitar de una manera indirecta la infección mejorando la adhesión de pre-

osteoblastos al implante, lo que hará que se forme la cápsula protectora más 

rápidamente evitando así la proliferación bacteriana y consiguiendo una rápida 

proliferación y diferenciación celular. 

Esta tesis presenta diferentes métodos de funcionalización de películas de titania 

mesoporosa mediante el uso de antibióticos y factores de crecimiento. Es posible 

incorporar antibióticos directamente, por inmersión, o también se pueden formar 

complejos con el antibiótico y ensamblar una película basada en multicapas de 

polielectrolitos (PEM, por sus siglas en inglés). Los iones bioactivos pueden 

estimular procesos celulares como la proliferación y diferenciación en pre-

osteoblastos. Estos iones se pueden incorporar a la matriz de titania o complejarse 

en las paredes de la película mesoporosa que se ha funcionalizado previamente con 

grupos carboxilo. 

En el Capítulo 1, se utilizan películas mesosporosas de titania para encapsular y 

liberar controladamente gentamicina. La superficie mesoporosa se funcionaliza con 

la proteína morfogenética ósea recombinante humana 2 (rhBMP-2, por sus siglas en 
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inglés). La gentamicina es un antibiótico de amplio espectro que se emplea en 

infecciones serias que han podido ser causadas tanto por bacterias gram negativas 

como positivas; como P. aureginosa, E. coli o citrobacter, Estreptococos o 

Estafilococos. La gentamicina es un aminoglucósido y por tanto su mecanismo de 

acción consiste en unirse al ARN ribosomal de la subunidad 30S de los ribosomas 

bacterianos, interfiriendo así en la síntesis proteica. La rhBMP-2 es una proteína 

ósea, y se ha demostrado que promueve la formación ósea y se emplea para 

reconstruir defectos óseos patológicos. 

 Las películas se sintetizan mediante recubrimiento por centrifugación sobre 

cubreobjetos de vidrio a través del método de autoensamblaje inducido por 

evaporación (EISA, por sus siglas en inglés). La película obtenida tiene un espesor 

de 80 nm con poros de 5.7 nm de diámetro conectados por cuellos de 4.2 nm de 

diámetro. Muestran una porosidad del 30.7 %, obtenida por Porosimetría 

Elipsométrica Ambiental (EEP, por sus siglas en inglés). El módulo de elasticidad de 

las películas se midió por nanoindentación, resultando tener un valor de 25,5 ± 5 

GPa, lo que hace que la superficie sea óptima para su uso en implantes óseos. A pesar 

de que las superficies de titania densa muestran un módulo de elasticidad en el 

rango de 100 a 120 GPa, mayor que el de películas mesoporosas de titania, el módulo 

elástico del hueso varía entre 4 y 30 GPa, donde se encuentra el valor de las películas 

mesoporosas. 

La gentamicina se incorpora en los poros por inmersión, mientras que la rhBMP-2 

se adsorbe electrostáticamente sobre la superficie de la película. Mediante medidas 

de ángulo de contacto y Espectroscopía Fotoelectrónica de Rayos-X (XPS, por sus 

siglas en inglés) se prueba la presencia de gentamicina y rhBMP-2. Se observa que 

la liberación de la gentamicina del interior de los poros de la película ocurre en dos 

fases; al inicio un 36 % de la gentamicina encapsulada se libera rápidamente, 

seguida por una segunda fase que ocurre más prolongadamente y que dura semanas. 

Este perfil de liberación resulta óptimo en implantes óseos donde es necesaria una 

alta concentración de antibiótico durante la cirugía y en las horas posteriores, 

viéndose necesaria su disminución cuando el tejido óseo se está formando. Las 

películas en base a titania funcionalizadas con gentamicina y rhBMP-2 han resultado 

ser eficaces contra la colonización por S. aureus. Cuando se sembraron 1,000 
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unidades formadoras de colonias (UFC), éstas no proliferaron, demostrando la 

eficacia de la gentamicina que se libera del interior poroso de la película. La 

presencia de rhBMP-2 mejora la adhesión celular, evaluada con la línea celular pre-

osteoblástica MC3T3-E1, lo que contrarresta el efecto que la gentamicina tiene en la 

proliferación y diferenciación celular. Después de 10 días de cultivo en medio 

osteogénico la diferenciación celular es el doble si se compara con películas 

mesporosas no funcionalizadas. 

En el Capítulo 2, se fabrican multicapas en base a poli-L-lisina (PLL) y complejos de 

ácido poli(acrílico) (PAA) y gentamicina mediante la técnica de ensamblado capa 

por capa (LbL, por sus siglas en inglés). La técnica LbL consiste en la adsorción 

sucesiva de polielectrolitos con carga opuesta mediante interacciones 

electrostáticas. La multicapa se fabrica sobre películas mesoporosas de titania. Los 

complejos se preparan mezclando PAA y gentamicina en 500 mM NaCl a pH 4.5 con 

el objetivo de obtener complejos de tamaño estable. Se necesitan aproximadamente 

2 h para fabricar la multicapa, y los complejos se estabilizan durante 2 h, después de 

mezclar el PAA con la gentamicina. Una vez han transcurrido estas 2 h se comienza 

a fabricar la multicapa. El tamaño de los complejos se mantiene estable durante la 

formación de la multicapa con un tamaño alrededor de 300 nm de diámetro. El 

ensamblado del PLL y los complejos sigue un crecimiento exponencial, observado 

cuando el ensamblado es monitoreado en la Microbalanza de Cristal de Cuarzo con 

monitoreo de la disipación (QCM-D, por sus siglas en ingles), permitiendo una alta 

carga de gentamicina en una PEM de únicamente 4 capas. Las imágenes de 

Microscopía Electrónica de Barrido (SEM, por sus siglas en ingles) y Microscopía de 

Fuerza Atómica (AFM, por sus siglas en inglés) demuestran que la superficie del 

ensamblado es irregular, lo que unido al crecimiento exponencial observado por 

QCM-D, da lugar a asociar este tipo de crecimiento a un crecimiento por “islas” 

descrito previamente en otros trabajos. Hasta pH 13 la PEM es estable, sin embargo, 

a pH fisiológico la gentamicina se libera. El 48 % de la gentamicina total es liberada 

en las 6 primeras horas, dando lugar después a una liberación paulatina del 80 % 

que dura más de un mes.  

Para estudiar la actividad de la gentamicina liberada de la multicapa se siembran 

1,000 UFC de S. aureus sobre las multicapas y sobre los sustratos control, que 
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consisten en cubreobjetos de vidrio sumergidos en gentamicina. Se incuban las 

bacterias durante 24 h y posteriormente se despegan las que se han adherido y se 

siembran sobre placas de agar, para proceder al conteo visual de las UFC después de 

dejarlas crecer una noche (aproximadamente 18 h). Las multicapas sintetizadas son 

eficaces para prevenir la proliferación de la S. aureus, en comparación con el control, 

la cantidad de bacterias que crecen sobre la multicapa son 3 órdenes de magnitud 

inferior. 

En el Capítulo 3, se preparan películas mesoporosas de titanato de estroncio 

(SrTiMFs) con un 30 % de volumen poroso y un contenido molar de estroncio (Sr) 

del 20 %. Las películas presentan un diámetro de poro de 5,5 nm conectados por 

cuellos de 3,2 nm y tienen un espesor de 85 nm. Los SrTiMFs muestran una gran 

área superficial interna disponible para el intercambio de Sr. Los espectros 

obtenidos en diferentes zonas de la película por Microscopía Electrónica de Barrido 

por Transmisión (STEM, por sus siglas en inglés) han demostrado que el Sr se 

encuentra distribuido homogéneamente en la estructura de titania y no se observan 

agregados o islas de Sr. 

La liberación del estroncio se monitorea mediante mediciones de Espectrometría de 

Masas de Plasma Acoplado Inductivamente (ICP-MS, por sus siglas en inglés). Los 

resultados indican que en las 8 primeras horas el 44 % del Sr que contenía la película 

es liberado al medio celular. Después de las 8 horas, se observa que más Sr se libera, 

pero en cantidades inferiores, y debido a que no se ha liberado el 100 % se espera 

que haya una liberación más lenta y paulatina. 

Los SrTiMFs mejoran la adhesión de pre-osteoblastos mostrando una mayor 

filopodia, se observa que las células están más alargadas, si se compara con células 

cultivadas sobre sustratos de titania que no contienen estroncio.  Las tasas de 

proliferación y diferenciación celular también mejoran gracias a la presencia de 

estroncio. En general, la incorporación de Sr en los recubrimientos de titania 

mesoporosa puede dar lugar a una más pronta osteointegración en las etapas 

tempranas de formación de tejido óseo. En el segundo día, la proliferación celular es 

en un 64% mayor, comparada con la proliferación celular sobre sustratos sin 

estroncio, y la actividad de la alcalina fosfatasa también es mayor después del quinto 

día de cultivo en medio osteogénico. 
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En el Capítulo 4, se sintetizan películas híbridas de sílice inorgánica-orgánica 

mesoporosa y de titania con grupos funcionales de ácido carboxílico 

covalentemente unido a las paredes de los poros. Las películas de sílice se fabrican 

en un solo paso utilizando alcoxisilanos derivados de ácidos carboxílicos obtenidos 

mediante la reacción clic de adición radicalaria tiol-eno iniciada fotoquímicamente 

(PRTEA, por sus siglas en inglés). Los organosilanos se preparan mediante una 

reacción clic entre tioácidos mercaptosuccínicos (MSA, por sus siglas en inglés) o 

mercaptoacéticos (MAA, por sus siglas en inglés) y el viniltrimetoxisilano (VTMS, 

por sus siglas en inglés). Las películas se sintetizan mediante EISA a partir de una 

solución que contiene una mezcla de tetraetoxisilano y diferentes cantidades de 

organosilanos. Las películas de titania se obtienen en dos pasos; el sol se prepara 

mezclando VTMS y el precursor de Ti, y después de la síntesis de la película, se 

somete la película a una reacción fotoquímica con MSA para incorporar los grupos 

carboxilo en la superficie porosa de la película.   

Las películas se caracterizan mediante microscopía electrónica, mediciones de 

porosimetría y Dispersión de Rayos-X de Ángulo Pequeño con detección 

bidimensional (2D-SAXS, por sus siglas en inglés). El grado de ordenamiento de las 

películas de sílice depende de la cantidad de organosilano agregado en la síntesis. 

La incorporación de los grupos vinilo y carboxilo funcionales se muestra mediante 

XPS, y la presencia de los grupos COOH se confirma mediante Espectroscopia de 

Transformada de Fourier de Infrarrojo por Reflectancia Difusa (DRIFTS, por sus 

siglas en inglés). La disponibilidad de los grupos COOH para la modificación química 

se demuestra mediante DRIFTS siguiendo los cambios en las bandas IR típicas de 

carbonilo durante el intercambio de protones y la complejación de metales. Para 

películas de sílice se estudia la complejación de Pb2 +,  y para películas  de   titania  

Sr2 +.  

La liberación del estroncio se estudia por ICP-MS, mostrando una liberación 

prolongada de Sr que dura una semana, beneficiando así los procesos de 

diferenciación y proliferación de pre-osteoblastos. Se observa una mejora en la 

proliferación a 3 día de cultivo y la diferenciación celular se mejora después de 15 

días de cultivo en medio osteogénico. Estos resultados se obtienen comparando con 

la proliferación y la diferenciación celular sobre películas de titania mesoporosa 

sumergidos en SrCl2.   
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Este capítulo muestra la posibilidad de sintetizar películas mesoporosas con grupos 

funcionales disponibles para la complejación de iones bioactivos, como pueden ser 

el magnesio o el calcio, que también ayudan en procesos celulares relacionados con 

la regeneración de hueso. 

En general, se ha demostrado la versatilidad de las películas mesoporosas de titania 

para mejorar la osteointegración y evitar la proliferación bacteriana.  Los materiales 

mesoporosos son muy versátiles siendo posible modificar la estructura mesoporosa 

y la orientación de los poros cambiando el surfactante empleado para la síntesis. 

También se puede modificar el espesor cambiando los parámetros de velocidad de 

centrifugación o inmersión y, por último, también es posible sintetizar películas 

híbridas mesoporosas, pudiendo obtenerse así películas con diversas 

funcionalidades. Modificando la síntesis de las películas mesoporosas, varía la 

concentración de moléculas que quedan atrapadas en el interior de la estructura 

porosa. Además, el área superficial interna disponible para el intercambio iónico 

también se puede ampliar.  
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I. INTRODUCTION 

Biomaterials are widely used with the aim to enhance the longevity and the life 

quality of human beings. They are used in different parts of the human body as 

replacement implants for knees, dental structures or hips, as artificial valves for the 

heart or for stents in blood vessels, to cite a few examples.[1–5] 

Bone grafting is one of the most commonly used surgical methods to augment bone 

regeneration in orthopaedic procedures.[6] Over two million bone grafting 

procedures are performed annually worldwide, which is the second most frequent 

transplantation in humans right after blood transfusion.[7] Among all clinical 

available grafts, autologous bone is still being considered as the gold standard since 

all necessary properties required in bone regeneration in term of osteoconduction, 

osteoinduction and osteogenesis are combined.[8] However, there is a limited supply 

and alternative to autologous grafting,  synthetic bone substitutes have been largely 

developed during the past decades.[9] 

Professor Themistocles Glück (1853–1942) from Berlin implanted the first artificial 

knee in 1890 and manufactured and implanted the first artificial hip in 1891 as well. 

The ivory head was fixed to the bone with a nickel plate and screws.[10] With the 

introduction of Vitallium® interposition implant (Co-Cr-Mo alloy), the American 

surgeon Marius Smith Petersen (1886–1953) achieved the first predictable and 

lasting results after an arthroplasty.[11] In this period surgeons experimented with 

real bone-joint replacements from various materials. The implant from the brothers 

Robert (1901–1980) and Jean Judet (1905–1995) from Paris achieved the greatest 

popularity.[12] Until this moment the prosthesis for hip replacement were made 

entirely of polymethilmehacrylate (PMMA) and frequently broke, this implant was 

afterwards reinforced with the introduction of a steel rod, but they still prone to 

fatigue fractures and loosening.[13,14] The called Judet hip prosthesis was introduced 

in 1948 to a patient, and the particularity of this implant was that to reconstruct the 

femoral head, an acrylic femoral head was used. This implant holds the current 

world record in the implant in vivo durability (51 years).[12] Artificial knees were 

developed in the same period but they were less successful if compared to hip 

implants. The reason for the inferior results was probably not in the implants itself 

but resulted from an inadequate surgical technique.  
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The modern concept of low-friction hip arthroplasty was developed in the 1970s 

using polyethylene in the cup, stainless steel in the femoral head and stem, and 

polymethyl methacrylate (PMMA) as bone cement (John Charnley, 1911-1982).[15] 

Charnley’s total hip arthroplasty has a long and well-established record with long-

term survival in more than 90 % of patients over 60 years of age.[16] Contemporary 

principles of mechanical axis balance and the importance of joint stability evolved 

only in the mid-1980s. Further development of the implants was based on the 

introduction of new materials, different ways of fixation, advances in implant design, 

properties and coatings, and new, less invasive surgical techniques. Today there is a 

very extensive list of materials used for production of artificial joints.[17]  

Synthetic implants 

Besides a vast number of available materials, ceramics, titanium and its alloys or 

polymers are the most used materials for orthopaedic implants.[18–20] A 

classification of the different type of materials used for implants can be done based 

on the biologic response that they elicit once implanted.[21] The material can be 

biotolerant, those materials that form a thin fibrous tissue interface; bioinert, 

typically oxides that integrate well into bone and do not cause a reaction with the 

host; and bioactive materials.[21,22] These last ones have been proven to promote 

tissue regeneration by interacting with the bone.[22] The materials classified by their 

biologic response are summarized in Table I-1.  
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Biodynamic 
activity 

Chemical composition 

Metals Ceramics Polymers 
 
Biotolerant 

 
Gold  
Co-Cr alloys  
Stainless steel 
Niobium  
Tantalum 

  
Polyethylene  
Polyamide 
Polymethylmethacrylate 
Polytetrafluroethylene 
Polyurethane 
 

Bioinert Commercially pure 
titanium  
Titanium alloy (Ti-
6AL-4U) 

Al oxide  
Zirconium oxide 
 

 

Bioactive  Hydroxyapatite  
Tricalcium 
phosphate  
Bio glass  
Carbon-silicon 

 

Table I-1. Implant materials classification by the biologic response they exhibit after 
implantation.[21]  

The properties and therefore the design and composition of a material for an 

implant is application-driven.  Mechanical properties, the resistance to corrosion 

and wear as well as osseointegration and biocompatibility are some of the 

properties the biomaterial should exhibit when selecting a candidate for bone 

replacement.[20] Depending on the type of bone, the modulus of elasticity varies 

between 4 to 30 GPa.[23] The implant should exhibit high tensile and compressive 

strength to prevent fractures and be functionally stable. An increase in the hardness 

of the implant leads to a decrease in wear, which prevents fracture of the 

implants.[21] Regarding the surface properties of the implant, is quite important the 

wettability, the more hydrophilic is the surface, the better osteoblast adhesion have 

been proved.[24] Many works have also shown the importance of the roughness of 

the surface in order to improve the cell and tissue response.[25,26]  

The material cannot be toxic and does not have to cause any inflammatory or allergic 

reactions in the body, thus the success depends on how the human body reacts after 

the implantation.[20]  The low wear and the corrosion resistance ensure the longevity 

of the material. Such resistance suppress the release of non-compatible metal ions 

into the body which cause allergic or toxic reactions.[27] Since the implant loosening 

is often the cause of the weak surface compatibility with adjacent bone or other 
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tissues, the surface characteristics of the implant are of fundamental importance 

having a direct impact on osseointegration.[28] Figure I-1 shows a scheme of the 

properties that must be taken into account for the design of a biomaterial for an 

implant.  

 

Figure I-1. Properties that a biomaterial should display to be a good candidate for its use in 
an implantable device.  

Titanium implants 

The increased use of titanium and its alloys as biomaterials is a result of  their 

superior biocompatibility and excellent low corrosion properties.[29,30] Since the 

role of an implant is the replacement of the bone, it needs to mimic the biological 

environment and mechanical properties of the bone. Although currently used 

commercial titanium implants satisfies the required mechanical properties with a 

Young’s modulus within the range of 100 and 120 GPa,[31] the chemical instability 

and deformations of protective oxide layer usually results in poor osseointegration. 

Surface deformations of the protective layer  liberate metal ions forming Lewis Acids 

and lowering the pH in the implant environment.[32] The acidic environment formed 

at the implant surface favours bacterial infection and causes immunogenic response 

which can lead to an aseptic loosening of the implant.[33]   
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Figure I-2. Schematic diagram of an artificial hip joint (left) and knee implant (right).[34] 

Many elements such as Ag, Cu, Fe or Zn form alloys with titanium, enhancing the 

stability of the implant in physiological media.[21] Among all titanium materials and 

titanium based alloys, the most used materials in biomedical field are the 

commercially pure titanium and the Ti-6Al-4V alloy. One of the most common 

applications of titanium alloys is as artificial hip joints that consist of an articulating 

bearing (femoral head and cup) and stem,[35] where metallic cup and hip stem 

components are made of titanium.  They are also often used in knee joint 

replacements, which consist of a femoral and tibial component made of titanium and 

a polyethylene articulating surface.[35] 

Most metals and alloys that resist well against corrosion are in the passive state. 

Metals in the passive state have a thin oxide layer on their surface, the passive film, 

which separates the metal from its environment.[36] Typically, the thickness of 

passive films formed on these metals is about 3-10 nm [35] and they consist of metal 

oxides. The natural oxide is amorphous and it is known that protective and stable 

oxides on titanium surfaces are able to provide favourable osseointegration. The 

stability of the oxide depends strongly on the composition structure and thickness 

of the film.[37] Because of the presence of an oxide film, the dissolution rate of a 

passive metal at a given potential is much lower than that of an active metal. It 

depends mostly on the properties of the passive film and its solubility in the 

environment.[38] 
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Surface engineering can play a significant role in extending the performance of 

orthopaedic devices made of titanium several times beyond its natural capability. 

The main objectives of surface treatments mainly consist of the improvement of the 

tribological behaviour, corrosion resistance and osseointegration of the implant. 

There are coatings for enhanced wear and corrosion resistance by improving the 

surface hardness of the material that can be applied by different surface 

modifications techniques such as surface oxidation, physical deposition methods 

like ion implantation and plasma spray coatings, as well as thermo-chemical surface 

treatments such as nitriding, carburizing and boriding.[39,40] 

As previously mentioned, one of the main drawback of titanium implants is the high 

risk of bacterial infection, thus the aseptic loosening, which leads to the need of 

perform a second surgery to replace the infected implant.[41] 

Revision surgery and implant infection 

Even with the development of prophylactic antibiotic therapies, environmental 

control and improvements in surgical techniques, the incidence of infection varies 

between 1 – 2 % in primary arthroplasties and 3.5 – 5 % in revision surgeries.[42,43] 

The main risk factors associated with infection in knee arthroplasty are a previous 

surgery, advanced age, female gender, rheumatoid arthritis, obesity, diabetes and 

immunodeficiencies.[44] The post-implantation surgical trauma weakens the local 

defence system, raising the risk of infection, if prolonged requires further surgical 

interventions to replace the implant.[41] The revision surgery, however, is less 

successful than the initial surgery because of higher risk of trauma and longer bone 

healing period.[45] Once the implant is exposed into physiological conditions  a 

protein layer can be formed on the surface, making feasible bacterial colonization 

and in the worst case the biofilm formation,[46,47] which acts as a protecting layer 

against the host defence and bactericidal agents. Therefore, it remains highly 

challenging and critical to avoid the infection just after the implantation surgery.[47]  

To treat the infection, if there is still no need to replace the implant, the infection 

focus has to be removed surgically and then the patient is treated for a long time 

with antibiotics.[48] The classification of the infection, used to determine the 

required treatment, differentiates infections developed early ( < 3 months), 

intermediate (3 – 24 months) and late ( > 24 months), classification proposed by 
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Zimmerli et al.[49] Early and intermediate infections are usually acquired during 

prosthetic implantation, whereas late infections results from haematogenous 

spread of the focus at a distance.[49,50] 

Two-thirds of the infections in orthopaedic implants are caused by Staphylococcus 

pathogens and they also are the responsible for two of the major bone infections: 

arthritis and osteomyelitis, which suppose the inflammatory destruction of joints 

and bones.[51] More specifically Staphylococcus aureus and Staphylococcus 

epidermidis account together for two out of three infections in orthopaedics.[51]  

Nosocomial infections are the ones associated with healthcare acquired in an 

hospital.[52] Staphylococcus aureus is an important nosocomial pathogen, able to 

cause a variety of human disease conditions. It can often be found as a commensal 

and a transient or persistent part of the resident flora of the skin and anterior nares 

in a large proportion (20 – 50 %) of the human population. However, when 

cutaneous/mucous barriers are breached, severe and at times life threatening 

infections can develop. Nosocomial infections by S. aureus are particularly frequent 

in immunocompromised and severely debilitated patients, and prevail in the 

presence of indwelling medical devices. Treatment of S. aureus infections is often 

complex, namely due to the emergence of methicillin-resistant S. aureus (MRSA) 

strains and resistance to other classes of antibiotics. Because of its pathogenic 

potential and complexity of its treatment, MRSA has received more attention than 

its methicillin-sensitive counterpart (MSSA). MRSAs are resistant to β-lactam 

antibiotics (oxacillin, penicillin and amoxicillin), including third generation 

cephalosporins, streptomycin, tetracycline and sulphonamides; and upon exposure 

to vancomycin and other glycopeptide antibiotics, certain MRSA strains become less 

susceptible to these antibiotics. S. aureus possesses several cell-surface adhesive 

molecules that facilitate its binding to the bone matrix. Binding involves a family of 

adhesins that interact with extracellular matrix (ECM) components and these 

adhesins have been termed microbial surface components recognizing adhesive 

matrix molecules (MSCRAMMs). Specific MSCRAMMs are needed for the 

colonization of specific tissues and for the adhesion to biomaterials and to the ECM 

proteins deposited on the biomaterial surface. Particular MSCRAMMs include 

fibrinogen-binding proteins, elastin-binding adhesin and collagen-binding adhesin. 
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A number of these adhesins have already been thoroughly investigated and 

identified as critical virulence factors implicated in various phases of infection, 

including early colonization, invasion, tissue localization and cell internalization.[53–

55] In recent years, the polysaccharide intercellular adhesin (PIA) has been found in 

many S. aureus strains, and is required for biofilm formation and bacterium-

bacterium adhesion.[56] This adhesin is responsible for the production of the 

extracellular polysaccharide matrix that develops the biofilm. It is known that once 

the biofilm is formed, the bacteria within the biofilm are protected from 

phagocytosis and antibiotics.[55]  

S. aureus produces virulence factors to facilitate disease progression, and rapidly 

develops antimicrobial resistance. The cell-surface virulence factors include the 

MSCRAMMs as receptors in the human host, other surface proteins, polysaccharide 

intercellular adhesin and capsular polysaccharides. The cell-surface MSCRAMMs 

typically are produced during exponential growth phase. The role of these various 

virulence factors is to provide nutrients required for survival in the host, and 

microbial cell protection from the host immune system during lesion formation. The 

secreted virulence factors, typically produced during the post-exponential and 

stationary phases, include a large group of exoenzymes, such as proteases, glycerol 

ester hydrolase and nucleases that make nutrients available to the 

microorganism.[55] 

A large body of works has been dedicated to the development of proper coatings for 

titanium implants, which make the surface antibacterial and avoid bacterial 

adherence. Due to the diversity of bacterial ecosystems the coatings should be 

tailored to tackle the different bacteria. On the other hand, tissue integration might 

also be taken into account. It has been demonstrated that the growing and 

proliferating cells on the surface of the implant can suppress bacterial proliferation. 

Although post-implementation supply of antibiotics to the patients can prevent 

infection, the low drug concentration at the target site remains as major 

disadvantage.[41]  

Gentamicin, cephalothin, amoxicillin, tobramycin or vancomycin are some of the 

most used antibiotics due to their broad antibacterial spectra.[57–61] Nonantibiotic 

organic antimicrobial agents can also be used because of the risk of drug resistance 
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when antibiotics are used.[41,62,63] Inorganic materials such as silver have also been 

proposed as an attractive dopant for titanium implants since it exhibits a broad 

antibacterial spectrum. However, silver compromises the activity of osteoblasts and 

epithelial cells.[64,65] The treatment of the implants with UV irradiation or by 

changing the surface crystallinity leads usually to alteration of physicochemical 

properties, allowing thus the decreases in the bacterial activities.[66] Bioactive 

polymers coatings, such as chitosan are also investigated because they can reduce 

bacterial adhesion.[67] Interestingly, the use nitric oxide has also been proposed as it 

inhibits the growth of a wide variety of bacteria.[68] Nitric oxide augments the 

antimicrobial ability of the immune system thus it loaded into xerogels for 

subsequent release.[69] Still, the combination of nitric oxide with titanium implants 

remains unproven. 

Paying special attention to the antibiotics, aminoglycosides as gentamicin or 

tobramycin, penicillins, glycopeptides like vancomycin, teracyclines or rifamycins 

are the drugs that have been used to give antibacterial properties to implants.[70] 

Aminoglycosides bind to the bacterial 30S ribosomal subunit. Ribosomes are the 

protein factories of cells. They are composed of two subunits in bacteria, a 30S and 

a larger 50S. By binding to the ribosome, aminoglycosides inhibit the translocation 

of tRNA (transcriptional) during translation and leaving the bacterium unable 

to synthesize proteins necessary for growth. Although the eukaryotic cells of 

humans also have ribosomes, these cellular protein factories differ in size and 

structure from the ribosomes of prokaryotes. That is why aminoglycosides do not 

interfere with protein synthesis in human cells. The mechanism of action of the 

aminoglycosides is shown in Figure I-3. Especially important is gentamicin, which 

is used for serious infections caused by either gram positive or negative bacterial 

strains, as P. aeruginosa, E. coli or Citrobacter, Streptococcus and Staphylococcus 

species.[71] This broad-spectrum antibiotic contains five amino groups which gifts 

the molecule with a positive charge in acidic environment because the pKa of the 

amino groups range in between 5.5 and 9.[72–74] Figure I-4 shows the gentamicin 

molecule.  
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Figure I-3. Mechanism of action of aminoglycosides to inhibit bacterial protein synthesis. 
The aminoglycosides bind irreversibly to the rRNA (ribosomal RNA) in the 30S subunit of 
bacterial ribosomes. They interfere with the translation reducing the rejection rate for tRNA 
(transcriptional RNA) that are not matches for the codon, leading to a misreading of the 
aminoacids, interfering with the protein synthesis.[75] 

 

 

Figure I-4. Chemical formula of  the Gentamicin molecule.[76] 

Layer-by-Layer technique for supramolecular structure deposition 

The build-up of multilayer films of polyelectrolytes using the layer-by-layer 

technique (LbL) was demonstrated by Decher et al.[77] The LbL technique is based 

on the alternative deposition of oppositely charged polyelectrolytes on top of 

charged surfaces, this process is shown in a scheme in Figure I-5.[78–80]  The 

assembly is driven by attractive electrostatic interactions and entropy 

considerations.[81,82]  
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Figure I-5. Layer-by-layer assembly method. Alternatively, positively and negatively 
charged molecules are adsorbed one after the other on a substrate. This process can be 
repeated n times to a final film thickness.[83] 

This technique is a powerful strategy for non-covalent modification of charged 

surfaces. Is an easy and reliable method for surface engineering and has many 

potential applications in diverse areas such as optoelectronics, nanofiltration, tissue 

engineering or devices such as carriers for drug delivery.[79,84–86] 

Significant research has been done using the LbL technique to produce 

polyelectrolyte multilayers (PEMs) films combining a diversity of components. 

Biopolymers such as proteins and nucleic acids, lipids, and inorganic particles have 

been introduced in the fabrication of multilayer films.[87,88] For biosensing purposes 

or multistep catalysis, research has been conducted in the incorporation of enzymes 

to the LbL films.[78]  Möhwald et al.[89] extended the deposition of thin films of PEMs 

on top of colloidal particles, instead of using planar surfaces. As the LbL assembly 

was proven to work on colloidal particles, the use of sacrificial templates for the LbL 

assembly allowed the fabrication of empty capsules retaining the size and the shape 

of the original colloidal template. Capsules based on PEMs have been fabricated 

aiming a controlled release and targeting.[89] 
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PEMs assembled by the LbL process can be also considered as a special case of 

polycation/polyanion complex formation. Due to the step-wise assembly of 

polycations and polyanions, the film has a layered structure. However, the layers are 

not fully stratified, as there is a certain degree of interdigitation among them due to 

the free space within a deposited polyelectrolyte layer, which gets filled when more 

layers are deposited.[90]  

PEMs result to be very stable. They cannot be easily removed unless one of the 

components loses charges by means of a change in pH , or when a specific ion or 

surfactant interacts with the polymers weakening the electrostatic interaction 

between the PEs.[91,92] Only at very high ionic strength the films can be partially 

erased.[93] 

Due to a wide range of PEs available to assemble multilayer films, as well the ability 

to tailor their properties by varying the deposition conditions, PEMs are being 

incorporated into a variety of biological applications. Their use includes coatings to 

either promote or prevent cell adhesion, and more importantly in directing or 

maintaining cellular phenotypes.[94] In addition to electrostatic interactions, 

multilayer films have been assembled from DNA strands using complimentary base 

pairing,[95] by click chemistry utilizing covalent bonding,  and through hydrogen 

bonding to create degradable multilayers for drug release applications.[96,97] 

PEMs have been assembled from synthetic as well as naturally occurring 

polymers.[80,98,99] Synthetic PEMs have been assembled from cationic PEs such as 

poly (allylamine hydrochloride) (PAH), poly (diallyldimethylammonium chloride) 

(PDAC) and poly-L-lysine (PLL) and anionic PEs such as poly (acrylic acid) (PAA) 

and sulfonated polystyrene (SPS).[94,100,101] PEMs have also been fabricated from 

naturally occurring PEs such as, polypeptides, polysaccharides, DNA, and 

proteins.[102–106] 

A self-assembled PEM can grow in a linear or exponential manner (Figure I-6).[99,102] 

Linear growth typically occurs when the PEs are highly charged and do not diffuse 

freely throughout the PEM. Highly charged PEs exhibiting linear growth include 

cationic PAH and anionic SPS, to name some.[99] On the other hand, exponential 

growth occurs in the presence of weak PEs as PLL, alginate (ALG), and poly-(lactide-

co-glycolide) (PLGA).[102,103,107,108] In a few cases, linear growth in the presence of 
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weak PEs has also been observed.[109] To explain the exponential growth of PEMs 

three models can be found in the literature;[110] the first one is called the ‘Diffusion 

Model’. This model states that the exponential PEM growth is largely due to the 

diffusion of at least one PE through the film, resulting in an exponentially increasing 

thickness, as additional bilayers are added to the film.[108,111–113] The ‘Dendritic 

Model’ is also used to describe the exponential growth of PEMs and is based on the 

well-known tendency of PE to from brushes when are in contact with oppositely 

charged structures.[110,114,115] Lastly, the ‘Island Model’ is proposed which states that 

the first PE only coats part of the surface forming ‘islands’. Then, further adsorption 

steps continue growing the initially formed islands increasing the available surface 

area showing an exponential growth of the formed PEM.[110,116] Researchers have 

exploited the two different modes of growth within the same PEM to create distinct 

regions within a multilayer. [117] 

 

Figure I-6. Scheme of the thickness increase in PEMs following a linear or exponential 
growth as function of the number of polyelectrolyte bilayers assembled. 

Polyamine acids facilitate the attachment of cells and proteins to solid surfaces in 

biological applications. In cell cultures normal attachment, growth, and 

development of many cell types are dependent on attachment factors and 

extracellular matrix components. α-Polylysine is a synthetic polymer, which can be 

composed of either L-lysine or D-lysine. "L" and "D" refer to the chirality at lysine's 

central carbon. This results in poly-L-lysine and poly-D-lysine respectively.[118] PLL 

is commonly used to coat tissue culture ware as an attachment factor and has a pKa 
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of 10.5.[119] It improves cell adherence which is based on the interaction between 

the positively charged polymer and negatively charged cells or proteins.[120] 

PAA is a synthetic high-molecular weight polymer of acrylic acid. In a water solution 

at neutral pH, PAA is a weak anionic polymer with a pKa of 3.9,[119] i.e. many of the 

side chains of PAA will lose their protons and acquire a negative charge. This makes 

PAA PE, with the ability to absorb and retain water and swell many times their 

original volume.[121] 

 

Figure I-7. a) Poly-L-lysine and b) Poly (acrylic acid) monomer chemical structure. 

PEMs assembled through the LbL technique can retain a high drug concentration, 

which creates new opportunities for the release of therapeutic molecules in a 

localized manner.[122] Drug reservoirs are constructed by exploiting the 

characteristic diffusivity associated only with exponentially growing PEMs, not 

normally observed under linear growth.[117] Assembly conditions modulate the 

mechanical properties of PEMs. Drug reservoirs take advantage of exponentially 

grown PEMs in which bioactive molecules are incorporated. Due to the higher 

diffusivity associated with such regions, bioactive molecules can easily diffuse, 

thereby providing a means for localized delivery at high concentration.[107] 

In order to fabricate films entailing a small positively charged biomolecule, such as 

an antibiotic (Gentamicin for example), these could be assembled at the place of 

polycations in the PEM. Although gentamicin sulphate, positively charged, can be 

assembled in LbL multilayers by alternating deposition with negatively charged 

polyelectrolytes,[123,124] its weak charge leads to low concentrations of drug loading 

and a low structural stability of the film that causes degradation.[122] 

Mesoporous titania 

Several surface modification techniques have been proposed to achieve a good 

interaction between titanium implants and bone tissue.[125] Since rougher surfaces 

promote bone and implant interlocking the coating of implant surface with 
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mesoporous film become an attractive method to improve bioactivity of the 

implant.[126,127]  

 

Figure I-8. Schematic representation of a titanium implant recovered with a mesoporous 
film used for knee and hip implants. [128,129] 

The IUPAC classification defines three types of porous materials depending on the 

pore size. Thus, microporous materials exhibit pores < 2nm, while the pore size 

between 2 and 50 nm corresponds to mesoporous materials. The macroporous 

materials have pores larger than 50 nm.[130] Mesoporous materials can be found in 

the form of powder, nanoparticles or films, and the framework composition can be 

organic, inorganic or metallic.[131]  

Mesoporous titania is obtained through the sol-gel process assisted by a surfactant 

as structure-directing agent. The synthesis of material with homogenous pores 

requires highly controllable experimental conditions since the titania precursors 

(titanium alkoxides and titanium tetrachloride) undergo rapid hydrolysis and 

condensation leading to the rapid TiO2 precipitation without forming 

mesopores.[131] Several methods have been developed for the synthesis of films of 

which the Evaporation-Induced Self-Assembly (EISA) is considered the most 

convenient to prepare mesoporous TiO2 films (MTFs),[132] where TiCl4 is the most 

used titanium source.[131]  
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The EISA process was first reported by Brinker and Ozin and was originally designed 

for the preparation of mesostructured silica thin films.[133,134] The solute (precursor) 

is dispersed in a solvent (usually alcohol), first, colloidal particles are formed and 

the called sol is formed. The colloidal particles aggregate to form a 3D network, 

called gel. In the sol-gel process the two most important reaction that occur are the 

hydrolysis and the condensation, leading to the formation of M-OH-M or M-O-M 

bridges.[135]  

Amphiphilic surfactants have the ability to self-assemble into a variety of structures. 

The surfactants have the natural ability to organize into different shapes and at a 

certain concentration, called Critical Micelle Concentration (CMC) the surfactants 

assemble into spherical micelles. The inorganic phase then undergoes condensation 

around the surfactant phase, called Liquid Crystal Templating (LCT) mechanism. 

The elimination of the surfactant molecules leads to the formation of the 

mesoporous material.[135] 

For a mesoporous thin film formation, by the EISA process, a solution containing the 

surfactant, the metal alkoxide or salt, the alcohol, water and often acid are mixed. At 

the beginning the surfactant concentration is lower than CMC, and the solution can 

be casted on a substrate through spray, spin or dip coating and the evaporation of 

the alcohol starts and the surfactant and the metal oxide concentrations start to 

increase. Due to the surfactant concentration increase the self-assembly of the 

organic-inorganic hybrid leads to a Liquid Crystal (LC) phase. Micelles are formed 

when the CMC is reached and an organized LC phase is formed, where the inorganic 

network is not still fully condensed, this phase is called Tuneable Steady State (TSS). 

In the TSS water and solvent molecules are in equilibrium with the environment and 

the duration of this state depends on the relative humidity (RH). Finally, the 

template is removed to give the porosity to the film and get a full condensation of 

the inorganic network. The film undergoes a calcinations process in a temperature 

range of 300 - 550 °C to remove the surfactant.[135] This process is shown 

schematically in Figure I-9. 
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Figure I-9. Evaporation Induced Self-Assembly (EISA) process scheme.  

Chemical functionalization of mesoporous titania 

The progress in the fabrication of mesoporous materials was accompanied with the 

development of novel strategies to incorporate organic functional groups within the 

pores. There are two main synthesis routes; the post-grafting (post-

functionalization), where the functional groups are incorporated to the porous 

matrix after the material is fabricated through vapour deposition or solution 

impregnation, and the co-condensation (one-step approach), where in one step the 

functionalization is achieved. In the post-grafting method, to achieve the 

functionalization, new bonds are formed between the Si-OH or M-OH groups that 

are in the surface react with the functionalizing agent. The co-condensation method 

requires the mixing of inorganic and functionality-containing precursors.[136,137] 

While the former method is relatively easy to implement, the latter method is time-

efficient and both the functionalization and condensation take place simultaneously. 

Usually organosilanes are used for the co-condensation approach, which can be 

mixed with titanium precursors to obtain mixed and functionalized mesoporous 

films. However, some of the functional groups will remain entrapped inside the 

network, remaining unavailable for further reactions.[138]  

Many different organic moieties have been incorporated to the pore surface, such as 

mercaptoalkyl, aminoalkyl, phenyl, glycidyl, vinyl, cyanoalkyl, and alkyl 

groups.[139,140] Functionalization with carboxylic groups has been less explored than 

other functional groups. There is a need to perform two steps for the 

functionalization due to the lack of suitable commercial reagents. This is the reason 
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why there is a lack of reported methods that allow the incorporation of COOH 

functional groups. Nevertheless, several methodologies have been described to 

achieve the incorporation of the COOH group into silica powders (SBA-15, MCM 

type, SiO2 nanoparticles) by co-condensation or post-grafting.[140] These strategies 

include: modification of a NH2-functionalized surface with succinic acid, co-

condensation or post-grafting with an aqueous solution of carboxyethylsilanetriol, 

or grafting of an organosilane bearing an ester group that results in a free carboxylic 

moiety after a hydrolysis step.[140] Another possible approach is the use of cyanide 

to carboxylic methods, wherein the COOH group is obtained after hydrolysis of the 

−CN group with sulphuric acid using hard experimental conditions: high 

temperature and long reaction times.[141] Liu et al. have shown successful 

incorporation of carboxylic groups into mesoporous thin films through a co-

condensation method, applying the cyanide to carboxylic conversion in a two-step 

method.[142] Despite some works can be found about co-condensation strategies for 

chemical functionalization of silica based mesoporous films and particles, no reports 

can be found in literature about chemical functionalization of titania based 

mesoporous structures. 

The functionalization with carboxyl groups brings a pH-dependent switch-ability to 

the pore surface, whose adsorption capability or catalytic activity can be varied by 

changing the solution acidity. This also brings the possibility to anchor 

biomolecules, such as proteins, antibodies, or folic acid to the COOH groups and can 

also be used as ligands for metal complexation in decontamination or detection 

processes.[141,143,144] Carboxylic groups could also be used to entrap bioactive ions, 

allowing a sustainable release of entrapped ions. 

Pores as reservoirs for drug delivery 

A typical implant replacement intervention requires the prescription of antibiotics 

to minimize the risk of the failure of implant integration and infectional 

responses.[145] To decrease the amount of drugs dosage, the local and controllable 

drug delivery becomes an alternative scenario to increase implant adaptation. By 

this mean, the delivery of the drugs occurs in an specific site of the human body 

where the local amount of drug and his release can be regulated.[146] 
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The goal of any drug delivery  vehicle is to provide therapeutic amounts of drug to 

the proper site in the body to achieve promptly and to maintain desired drug 

concentration.[147] Delivery of drugs by means of the so called controlled release 

technology began in the 1970s and has continued to expand rapidly.[148] Various 

drug delivery systems, such as liposomes, micelles, emulsions, polymeric 

micro/nanoparticles have shown great promise in controlled and targeted drug 

delivery. Among these systems porous materials are emerging as a new category of 

host/guest systems.[149–152] 

As expected, a large surface area and large pore volume enable mesoporous 

materials to act as drug reservoirs. The most important requirement for 

mesoporous coatings is that they must have the ability to load and release drugs. 

The substrate has to be able to hold the drug and deliver it gradually in the specific 

target site.[153] The dose of the drug and the necessary release time vary on the 

application.  Drug release from porous carriers may be complete within 10 min or 

be incomplete after several hours or days. Solvent polarity and surface properties 

play an important role in the adsorption and release of drugs from porous 

carriers.[154,155] Adsorption is the accumulation of concentration of substances at a 

surface or interface; the phenomenon by which the molecules of gas, vapour and 

liquid spontaneously concentrate at a contacting surface without undergoing 

chemical reaction, thereby forming a surface or interfacial layer. 

The advantage of using MTFs is their tuneable pore size and films thickness that 

translates to a well-controlled amount of drug to be loaded.[156] Typical loading is 

performed through capillary action by immersing the templates in a concentrated 

drug solution. The release profiles have an initial burst release and a decreasing tail 

distribution, which is lower due to the pore interconnection and the presence of 

necks, making the molecules to get entrapped inside the film and making slower 

their release. Although the period just after the implantation is the most critical 

stage that brings the high risk of infection, the antibacterial properties of the implant 

should remain for longer time until the complete integration of the implant.[46,157] 

Bone remodelling process 

To ensure the implant integration in the human body is important to understand 

how the bone is remodelled and behaves in order to perform in vitro experiments 
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and be sure about the biocompatibility and the osseointegration capability of the 

implantable material. 

The skeleton is a very dynamic tissue and remains in a constant repairing of 

mechanical microdamage. The cell forming actions are the processes that ensure the 

secure integrity of the skeleton resorption during the exchange of old bone with new 

bone. These processes are regulated by local and systemic factors that maintain the 

subtle balance between the resorption and bone formation, avoiding the excessive 

bone loss or gains, which may cause risk of fracture or compression syndromes. 

Osteoclasts, osteoblasts and osteocytes take part in those processes.[158] The process 

of remodelling commences by osteoclastic resorption that forms a lacuna with a 

depth between 40 and 60 µm leading to completed refilling of lacuna with new 

bone.[159,160] Many transcription factors are involved in the osteoblast 

differentiation process, which are derived from mesenchymal cells differentiating 

from progenitors into proliferating pre-osteoblasts, osteoblasts and osteocytes or 

bone-lining cells. Runt-related transcription factor 2 (Runx2) is essential for cell 

differentiation and it regulates the expression of diverse genes.[161] Alkaline 

phosphatase (AP) and type I collagen are expressed once osteoblast are 

differentiated and they are important for bone matrix synthesis and the 

mineralization process.[162] Mature osteoblasts differentiate to osteoclasts, whose 

objective is to break down bone tissue, so a balance is found between new bone 

formation and resorption. Osteocytes are a type of osteoblasts that get entrapped in 

the bone matrix and form the so-called osteoid, a non-mineralized organic part of 

the bone.[158] All this process is shown schematically in Figure I-10.  

 

Figure I-10. Bone remodelling cycle. Bone surface is resorted by osteoclasts and pre-
osteoblast differentiate to osteblasts for new bone formation and osteocyte differentiation. 
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The underlaying surface is of major importance because it defines the proper bone 

cells attachment to form focal adhesions. Through the focal adhesions, cells interact 

with the surrounding and mediate a bidirectional signalling. Integrins play a major 

role in the process through bounding to the actin cytoskeleton inside the cell and to 

the substrate outside the cells.[163] Growth and differentiation of pre-osteoblasts are 

regulated by transcription factors activity and gene and protein expression, which 

are activated due to the mechanotransducive signalling the integrins mediate.[164] 

As previously mentioned, it is well known that cell proliferation allows fast implant 

integration in the tissue (osseointegration), avoiding bacterial growth. Implant 

surface modifications can enhance the interactions that occur with the biological 

fluids and cells and accelerate osseointegration. Many bioactive coatings have been 

reported. For example, calcium phosphate coatings have been shown to increase the 

biochemical interlock between bone and implant materials. Similarly, collagen 

coating promotes osseointegration.[165–167] Also, the use  of growth factors can 

enhance osteoblast growth, proliferation and differentiation, as has been 

demonstrated in the case of bone morphogenetic protein 2 (BMP-2).[168],[169]  

Bone morphogenetic proteins regulate growth, differentiation, chemotaxis, and 

apoptosis, and play pivotal roles in the morphogenesis of a variety of tissues and 

organs.[170] They are members of the transforming growth factor-β (TGF-β) 

proteins, which includes a large families of growth and differentiation factors.[171] 

Whereas the BMPs are multifunctional proteins, implantation of the osteogenic 

BMPs such as BMP-2 and BMP-7 at an osseous site results in bone and cartilage 

formation. In vivo, these BMPs act primarily as differentiation factors, turning 

responsive mesenchymal cells into cartilage- and bone-forming cells. This is 

supported by many in vitro studies showing that the BMPs turn on specific markers 

of the osteoblast or chondroblast phenotype in a number of cells.[172]  

The activity of BMPs is tightly controlled at many levels. Outside the cell, soluble 

inhibitory proteins can bind certain BMPs and inhibit their binding to cell surface 

receptors. It has been found that BMPs can up-regulate the expression of some of 

these inhibitors, suggesting a negative feedback loop that limits the activity of BMPs. 

A number of negative regulators of BMP action exist within the nucleus. All of these 



Introduction 

32 
 

regulatory mechanisms together cause the bone-induction process to be controlled 

tightly and self-limiting.[173,174]  

Recombinant human BMP-2 (rhBMP-2) induces the expression of osteocalcin, a 

bone specific protein[172] and induces expression of the osteoblast lineage markers. 

BMP-3, the most abundant BMP in adult bone, is an antagonist of osteogenic 

BMPs.[175] BMP-3 inhibits BMP-2 mediated induction of Msx2, a gene that provides 

instructions for producing a protein that is necessary for proper development of 

cells and tissues throughout the body, and blocks BMP2-mediated differentiation of 

osteoprogenitor cells into osteoblasts. 

BMPs bind to two types of receptors termed as Type 1 and Type 2 receptors, 

required for signal transduction.[176] The overall structures of Type 1 and Type 2 

receptors, named as BMPR-I and BMPR-II respectively, are similar. They have a 

short extracellular domain with some conserved cysteine residues, a single 

transmembrane domain, and an intracellular domain containing a serine/threonine 

kinase motif. Even BMPs can interact directly with BMPR-I, signal transduction for 

BMPs require both receptors, because BMPs in the first moment BMPs interact with 

BMPR-II, because this is the specific receptor, which facilitates afterwards the 

interaction with BMPR-I, that is in charge of mediating the signals inside the cells to 

activate Smad proteins.[173,177–179] Smad proteins are also part of the TGF-β 

superfamily, and are very important to regulate cell development and growth.[180] 

Once inside the cell membrane, the Smads are phosphorylated by Type 1 receptor 

kinase so they can be transported to the cell nucleus and the accumulation of these 

complexes in the nucleus leads to the regulation of transcriptional responses.[181] All 

the process described above is schematically shown in Figure I-11.  
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Figure I-11. BMP pathway to induce bone formation. 

Bioactive ions 

Bone surface chemistry has a large influence on proper and fast osseointegration. 

Human bone mineral consists of various ion-substituted apatites, thus, the use of 

bioactive elements is being developed to induce the ability of bone formation.[182] 

Several ions have been shown to be capable of inducing osteoblast precursor 

differentiation through growth factor signalling pathways, or to stimulate other 

processes in support of bone tissue growth. These ions include boron (B3+), calcium 

(Ca2+), cobalt (Co2+), copper(II) (Cu2+), fluoride (F–), lithium (Li+), magnesium 

(Mg2+), niobium (Nb5+), phosphate (PO43–), silicate (Si4–), silver (Ag+), strontium 

(Sr2+), vanadium (V5+), and zinc (Zn2+). Compared with protein growth factors, the 

advantages of using such ions to induce bone tissue repair are manifold, including 

lower cost, greater simplicity, higher stability, and more efficacy at low 

concentrations.[183] Table I-2 summarized the main effects observed for the 

mentioned ions. 
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Ion Effects and in vivo main results References 

 
Boron  
(B3+) 

• Promote osteogenic differentiation through enhanced 
ALP activity and increased expression of osteogenic 
gene markers, improved mineralization, proliferation 
and adhesion. 

• Scaffolds comprising nanogels combined with boron-
containing mesoporous bioactive glass showed 
improved bone tissue formation in critical-sized rat 
femur defects 

[184–186] 

 
Calcium 
(Ca2+) 

• Increased adhesion, proliferation, and differentiation 
of osteoblasts. 

• Titanium implants modified with Ca2+ demonstrated 
elevated bone density and osseointegration after 12-
weeks post implantation in a sheep tibia model. 

[187–189] 

 
Cobalt 
(Co2+) 

• Downregulates some osteogenic markers and reduces 
proliferation of osteoblasts; also stimulates osteoclast 
activity; is important in angiogenesis. 

• Cobalt-treated implants had improved 
vascularization in mouse models. 

[190,191] 

 
Copper(II) 
(Cu2+) 

• Borate bioactive glass scaffolds doped with 3 wt% 
CuO demonstrated improved angiogenesis and bone 
formation in rat calvarial defects after 8 weeks. 

[192–195] 
 

 
Fluoride  
(F–) 

• Fluoride promotes proliferation, increases 
mineralization, upregulates osteogenic marker genes, 
and modulates apoptotic processes. 

• Fluoride-substituted apatite containing 0.48 wt% F 
showed increased rate of bone formation 2 weeks 
post implantation in rats. 

[183,196–198] 
 

 
Lithium 
(Li+) 

• Increases proliferation, cementogenic differentiation 
and ALP activity. 

• Local application of Li2CO3 accelerated bone 
regeneration by promoting osteoblastgenesis and 
inhibiting osteoclastgenesis in male Wistar rats. 

[199,200] 

 
Magnesium 
(Mg2+) 

• Increases expression of collagen and matrix 
mineralization; increases spreading. Decreases 
osteoclast differentiation, increases cell adhesion to 
biomaterial surfaces. 

• Enhances osseointegration by increasing bone-to 
implant contact. 

[201–204] 

 
Niobium 
(Nb5+) 

• Has been shown to stimulate osteoblast activity, 
promote mineralization, and control cytotoxicity in 
bone tissue cultures; combined with HA, it can 
increase calcification, ALP activity, and osteoblast 
function. 

• Ti-Nb alloy demonstrated osseocompatibility and 
osseointegration at 2, 4, and 12 weeks post 
implantation in female beagle dogs. 

[198,205] 
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Phosphate 
(PO43–) 

• Induces apoptosis in osteoclasts and inhibits 
osteoclast differentiation and bone resorption 
activity. 

• P is involved in osteoblast differentiation and ECM 
mineralization. 

[206–209] 

 
Silicon 
(Si4–) 

• Can induce osteoblast differentiation and collagen I 
production and promotes osteogenesis and 
angiogenesis. 

• In female Sprague–Dawley rats, dietary silicon. 
Influences bone growth through modulation of 
turnover of collagen and sialic acid-containing ECM 
proteins. 

[183,196] 

 
Silver  
(Ag+) 

• Has antimicrobial actions when used in tissue culture. 
Furthermore, exposure of bone progenitor cells to 
silver based nanoparticles accelerated osteogenesis. 

[183,210,211] 
 

 
Strontium 
(Sr2+) 

• Increases expression of Runx-2, BMP-2, OCN, OPN, 
BSP, and Col1, ALP activity and matrix mineralization. 
Enhances attachment, proliferation, and 
differentiation in osteoblastic cells; reduces osteoclast 
activity. 

• Promotes bone formation, remodelling and 
osseointegration by increasing the bone-to-implant 
contact. 

[204,212–216] 
 

 
Vanadium 
(V5+) 

• In vitro studies demonstrated its pro-osteogenic 
function without significant cytotoxicity. 

• Known to be more highly concentrated in bone tissue 
in vivo, suggesting that it has a role in osteogenesis; 
enhanced angiogenesis and chondrogenesis, and 
promoted mineralization 3–4 weeks post fracture in 
male Wistar rats.  

[210,217,218] 
 

 
Zinc  
(Zn2+) 

• Increases proliferation, expression of type I collagen, 
Runx-2, BSP, and OCN, ALP activity in enhanced. 

• Increases bone formation, BMD, bone mineral content 
growth, osseointegration, peri-implant osteogenesis, 
bone-to-implant contact. However, it can also 
unfavourably increase bone resorption. 

[219–226] 
 

Table I-2. Summary of the effects of various ions on bone regeneration. 

Calcium has a variety of roles in cells and living systems, from intracellular 

molecular signalling to macroscale structural properties. This ion is especially 

important in bone tissue, because it is one of the two most essential components of 

mineralized bone matrix, along with phosphate. Moreover, the hydroxyapatite that 

forms the inorganic phase of bone tissue contains approximately 99% of the calcium 

in the body, acting as a storage reservoir for the mineral. Calcium can be leached 

from, or deposited into, existing bone matrix to maintain calcium homeostasis in the 
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body. This bone calcification system is important in the formation of mature bone 

and during bone reparation. Therefore, it is imperative to maintain the extracellular 

concentration of calcium in bone tissue.[227] Furthermore, cellular calcium signalling 

is a key process in the formation and repair of bone. Calcium can stimulate the 

proliferation of mesenchymal precursor cells, as well as mature bone cells,[228] 

through a process dependent on the production of nitric oxide (NO). This allows for 

appropriate numbers of bone growth precursor cells to be generated and recruited 

to the injury site in the context of bone tissue regeneration. In the context of bone 

regeneration applications, the calcium ion is of great importance. In vitro studies 

have shown that moderate extracellular calcium concentrations are optimal for 

osteoblast proliferation and extracellular matrix (ECM) mineralization.[229] 

Furthermore, recent research has demonstrated that loading of calcium into bone 

repair scaffolds promotes the adhesion, proliferation, and differentiation of 

osteoblast-like MG63 cells in vitro.[188] This observation, keeping in mind the general 

importance of calcium in bone formation and cellular signalling, gives support to the 

idea of using calcium ions to promote bone regeneration in medical applications. 

Magnesium is the fourth-most abundant element in the human body, of which 

approximately half is stored in bone tissue. [230] It is an essential cation for many 

physiological functions, including enzymatic reactions involved in energy 

metabolism and synthesis of proteins, lipids, and nucleic acids.[184] Numerous 

studies have shown a correlation between magnesium deficiency and 

osteoporosis.[210] Pure magnesium corrodes too quickly in physiological pH and 

produces excessive hydrogen gas; therefore, efforts to use the metal itself in 

orthopaedic applications have been impeded.[230] However, there have been several 

studies focused on complementing biomaterials with Mg2+ that have shown Mg2+ 

supplementation to increase cellular adhesion via an integrin-mediated mechanism, 

spreading, proliferation, ALP activity, matrix mineralization, and osteogenic 

differentiation in vitro as well as enhance osseointegration in vivo.[203,204,231] 

Silicon, commonly existing as the silicate ion (Si4–) in vivo, has an essential role in 

bone-forming metabolic processes. Silicon concentrations are elevated during early 

bone calcification, inducing hydroxyapatite precipitation into the matrix.[183] Si ions 

have been widely used to modify hydroxyapatite, which is also a used biomaterial 
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for bone replacement. In addition, the presence of Si ions speeds the remodelling. 

Silicon also has a role in modulating the homeostasis of collagen and other ECM 

proteins in bone matrix; the ion induces osteoblast differentiation as well as 

collagen I production in human osteoblast cells.[232] In addition, silicon is able to 

induce angiogenesis and vascularization.[147] 

Zinc is an essential trace element required for many cellular catalytic, structural, and 

regulatory processes and is critical for normal growth, immunological functions, and 

neurological health.[233,234]  Zinc is further recognized as an antioxidant and anti-

inflammatory agent that might have significant therapeutic benefits against several 

chronic diseases, such as cancer, neurodegeneration, atherosclerosis, and 

immunological disorders. It has long been known that zinc is required for bone 

growth and development and that its deficiency can lead to many kinds of skeletal 

abnormality in fetal and postnatal development, including bone growth retardation, 

abnormal mineralization, and osteoporosis.[234,235] At a cellular level, zinc exerts a 

dual mode of action by supporting osteoblastgenesis and suppressing 

osteoclastgenesis. Zinc can enhance osteogenesis through inducing collagen 

synthesis, ALP activity, and mineralization of bone nodules. In osteoblast-like 

MC3T3-E1 cells, this is mediated by Runx2 expression, the master gene of 

osteogenesis and, in mesenchymal stem cells.[219,220,236] 

Strontium is structurally, physically, and chemically similar to calcium and, thus, has 

been studied extensively in the context of bone regeneration. Strontium is a strong 

bone-seeking trace element, of which approximately 98% is localized in human 

bone tissue.[237] In recent years, strontium has been recognized as a treatment for 

osteoporosis in the form of strontium ranelate. In vitro, the drug as a dual mode of 

action, by both decreasing bone resorption and increasing bone formation.[238] Over 

time, this has shown to translate into an increase in osteoblast surfaces, mineral 

apposition rate, trabecular and cortical bone formation, bone mineral density 

(BMD), and ultimately, lower risk of fracture.[239]  

Strontium itself promotes osteogenic differentiation of MSCs by upregulating the 

expression of osteoblast marker genes, such as Runx2, OCN, osteopontin (OPN), bone 

sialoprotein (BSP), and type 1 collagen, and increasing ALP activity and matrix 

mineralization.[212] Strontium also upregulates the expression of endogenous BMP-
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2;[213] however, when used in conjugation with free rhBMP-2, a Sr-rhBMP-2 complex 

is rapidly formed that undermines the binding capability of rhBMP-2 to its receptor. 

As a result, the BMP/Smad signalling pathway is suppressed, decreasing the 

efficiency of in vitro and in vivo rhBMP-2 induced osteogenesis.[182] Strontium has 

also widely been used to enrich biomaterials such as various kinds of calcium 

phosphate, bioactive glass, bone cement, and metallic implant. The presence of Sr2+ 

in these structures enhanced the proliferation and osteogenic differentiation in 

osteoblastic cells, and inhibited osteoclast activity in vitro.[214,240] In vivo, Sr2+ 

incorporation promotes bone formation, remodelling and osseointegration. Studies 

have shown Sr2+ to lead to an increase in the bone-to-implant contact, peri-implant 

bone volume, and push-out force.[204,241] Additionally, a recent study investigated 

the potential benefits of a combined ionic therapy using a cobalt- and strontium-

doped bioglass, making use of the osteogenic effect of strontium and the angiogenic 

effect of cobalt, in the regeneration of functional bone tissue.[241] This highlights the 

potential therapeutic applications of combining multiple ions into bone tissue 

regeneration implants to exploit the different actions of different ions. 

Shi et al. have shown that strontium can be incorporated into the titanium implant 

surfaces to subsequently release the bioactive ion and enhance implant 

osseointegration.[242] High surface of MTF coatings enable high interaction surface 

of the implant with the surrounding. Importantly, it is possible to incorporate 

strontium or calcium into the MTF during the synthesis process simply by adding 

ionic salts to the sol.[243] By this way the ions will be incorporated to the titania 

matrix forming titanates with an enhanced biological activity. As for now the 

incorporation of 0.2 x 10-3 : 1 of Sr : Ti relation in moles has been achieved.[243] 
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II. AIM AND OBJECTIVES OF THE THESIS 

This PhD dissertation aims at the design and fabrication of mesoporous titania thin 

films with controlled pore size and chemical functionalization for potential use as 

coating in titanium implants. Mesoporous coatings offer the advantage that they 

display pores that can be filled with drugs and molecules promoting cell growth and 

with antibacterial properties that can be beneficial for the bone regeneration. In 

addition, in mesoporous materials the active surface of the coating is largely 

increased due to their porosity. Pores will be used here for the encapsulation and 

sustainable release of antibiotics.  The large surface area of the porous materials will 

provide a means to enhance the delivery of bioactive ions. In addition, the 

mesoporous coatings will be engineered with bioactive molecules and self-

assembled films of antibiotics.  

The general aim comprises the following specific objectives: 

Objective 1 

To design and fabricate functional mesoporous titania films (MTFs) loaded 

with antibiotic molecules such as gentamicin and its subsequent controlled 

release. Drug release will be assessed through fluorescent emission measurements 

at different time periods. The impact of the antibiotic release will be evaluated by 

studies of S. aureus proliferation on top of the film. In addition, recombinant human 

Bone Morphogenetic Protein 2 (rhBMP-2) will be assembled on top of the MTFs. The 

impact of rhBMP-2 on MC3T3-E1 pre-osteoblastic cell line proliferation and 

differentiation will be evaluated. 

Objective 2 

To fabricate a multilayer coating through the layer-by-layer technique using 

as building blocks poly-L-lysine (PLL) and complexes of gentamicin and poly 

(acrylic acid) (PAA) to achieve a stable film capable of releasing gentamicin in 

a time window of weeks. Optimal gentamicin concentrations and ionic 

strength/pH conditions will be found to obtain stable complexes with the highest 

possible loading of gentamicin. The release of antibiotics and effectiveness of the 

PEM will be evaluated studying the proliferation of S. aureus on top of the film. 
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Objective 3 

To synthesize mesoporous films comprising strontium titanates and evaluate 

their potential for enhancing osseointegration. A new fabrication method will be 

evaluated that comprises the film formation from a heterogeneous precursor 

mixture containing titanium precursor and strontium chloride as well as a structure 

directing agent. By spin coating and taking advantage of the evaporation induced 

self-assembly (EISA) method SrTiO3 mesoporous films will be fabricated. The 

release of strontium ions from the film will be studied and their capability to 

promote MC3T3-E1 pre-osteoblast cell proliferation and differentiation for the 

improvement of osseointegration of titanium implants will be evaluated. 

Objective 4 

To fabricate mesoporous titania films functionalized with carboxylic groups 

capable of complexing and releasing Sr+2 for enhanced osseointegration. A   

one step co-condensation approach will be developed to synthesize mesoporous 

silica films with carboxylic groups, and then the synthesis will be extended to the 

functionalization of titania films. A two-step synthetic pathway is followed to obtain 

a versatile titania mesoporous system that can be functionalized with different 

bioactive ions. The presence of carboxylic groups will be evaluated by selective 

complexation of bioactive ions; lead and strontium for silica and titania films, 

respectively. The main purpose of this chapter is to enhance cell osseointegration in 

implants by means of the release of strontium ions complexed to carboxylates in the 

pore walls of the coating. 
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III. MATERIALS AND METHODS 

Materials 

All the mesoporous films based on titania are prepared in glass coverslips of 14 mm 

in diameter and 0.13 - 0.16 mm of thickness from Thermo Scientific through spin 

coating. Silica based mesoporous films are prepared in glass slides of 0.8 – 1 mm of 

thickness from Thermo Scientific through dip coating. 

For the titania film synthesis Titanium (IV) Chloride (≥ 99.0%, TiCl4), 

tetraethoxysilane (TEOS, 98 %), Brij 58 and Pluronic F127® were purchased from 

Sigma Aldrich (Madrid, Spain) and Absolute Ethanol (≥ 99 %, EtOH) from Scharlau. 

For chemical and biomolecular functionalization of the mesoporous films 

Mercaptosuccinic acid (MSA, 97 %), Mercaptoacetic acid (MAA, 97 %), 

Vinilmethoxisilane (VTMS, 98 %), Benzophenone (Ph2CO, 99 %), Strontium chloride 

hexahydrate (SrCl2 x 6H2O), recombinant human Bone Morphogenetic Protein -2 

(rhBMP-2) and Gentamicin Sulphate were also purchased from Sigma Aldrich 

(Madrid, Spain). Pb(NO3)2 and methanol were purchased from Merck.  

For LbL coatings Poly (acrylic acid) solution Mw = 100 kDa and Poly – L –lysine  0.01 

% with Mw = 150 – 300 kDa were also purchased from Sigma Aldrich (Madrid, 

Spain). 

To study the gentamicin release 2 – mercaptoethanol, Boric Acid and O – 

phtaldehyde were purchased from Sigma Aldrich and the 2 – propanol was 

purchased from Fisher Scientific. 

Phosphate buffered saline (PBS) in tablets, Sodium dodecadocyl sulphate (SDS), 

Nitric acid (HNO3) and Sodium hydroxide (NaOH) were purchased from Sigma 

Aldrich. Sodium chloride (NaCl), Calcium nitrate (Ca(NO3)2) and hydrochloric acid 

(HCl) were purchased from Fisher Scientific.  

All the buffers and solutions were filtered through the 0.2 μm filters (Fisher, Madrid, 

Spain) and degassed in bath sonicator prior to its use. The Falcon polystyrene tissue 

culture plates were purchased from Fisher Scientific (Madrid, Spain). Nanopure 

water used in preparation of all the dilutions and buffers was produced with a 

Diamond UV water purification system (Branstead International, IA, Iowa, USA). 
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Methods 

The main techniques and methods used are described below, and more specific 

methods are presented in the experimental part of each chapter. 

Spin coating and dip coating 

The spin coating technique uses centrifugal forces created by a spinning substrate 

to spread a coating solution over the desired surface to cover. Is important the 

amount of liquid used and it should be dispensed in the proper location with the 

help of a syringe or a pipette used manually or with an automated pumping 

system.[244] 

The setup consists of a sample holder or a stage, a motor and a controller used to 

spin the sample at a specific velocity and for a determined time. The solution is 

dispensed just at the beginning of the spinning process while the spin speed starts 

to accelerate to spread the liquid over the surface to cover it. During the spin time 

the solution is spread across the substrate and the excess will be forced off. The spin 

velocity will determine the coating thickness because while the spin speed 

decreases, the lower amount of solution would be forced off.[244]  

For the mesoporous films synthesized by spin coating for this research work, 30 µL 

are dispensed in the glass substrates. The acceleration time is set at 0 to reach the 

velocity of 68 rpm as soon as possible and the sample is spinning at this velocity for 

30 seconds. The SCC-200 spin coater from Novocontrol Technologies is used. 

In dip coating technique, the substrate where the glass slide is withdrawn vertically 

to the sol.[245] Thickness and uniformity are sensitive to the conditions the substrate 

is withdrawn, and the faster the velocity the thicker is the film deposited.[246]  

A withdrawal speed of 3 mm s-1 is used to deposit the films synthesized by dip 

coating onto glass slides.  

X-Ray photoelectron spectroscopy (XPS) 

X-Ray photoelectron spectroscopy is a surface analysis technique. It is used to 

measure the elemental composition, the empirical formula and chemical and 

electronic state of the elements within a material.[247] The basic principle of XPS lays 

in photoelectric effect described by Einstein.[248] In XPS experiment, kinetic energy 

is measured from electrons that are emitted from the surface as schematically 
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shown in Figure III-1. A soft X-ray irradiation is used to excite the core electrons. A 

bound electron adsorbs the photon, converting some of its energy into kinetic 

energy (KE). The electron leaves the atom and some of its energy is used to 

overcome the Coulomb attraction of the nucleus, reducing its KE by its initial state 

binding energy (BE). At the same time the outer orbitals readjust, lowering the 

energy of the final state that is being created and giving this additional energy to the 

outgoing electron. XPS is very surface sensitive technique as atoms emit photons 

from few top atomic layers. A photoelectron spectrum is recorded by counting 

ejected electrons over a range of electron kinetic energies. Peaks appear in the 

spectrum from atoms emitting electrons of a particular characteristic energy. 

 

Figure III-1. Schematic representation of XPS. A core electron is excited with X-ray source, 
a photoelectron is ejected from the atom for a value of the binding energy, the kinetic energy 
and the work function of the spectrometer.  

Experiments were performed with a SPECS Sage HR 100 spectrometer equipped 

with a 100 mm mean radius PHOIBOS analyser and a nonmonochromatic X-ray 

source (Mg Kα line of 1253.6 eV energy and 250 W), placed perpendicular to the 

analyser axis and calibrated using the 3d5/2 line of Ag, with a full width at half 

maximum of 1.1 eV. The selected resolution for high resolution spectra was 15 eV of 

pass energy and 0.15 eV per step. All measurements are made in an ultrahigh 

vacuum chamber at a pressure of around 8 × 10−8 mbar. An electron flood gun is 
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used to neutralize the charging. Measurements are conducted directly on the films, 

which are previously washed with absolute ethanol and cut into samples of 1 cm × 

1 cm. The analysis of spectra is done with CasaXPS 2.3.15dev87 software. Satellite 

removal and Shirley background subtraction are applied. Binding energies were 

calibrated assigning to the C 1s C−C peak 285 eV, and peaks were fitted with 

Gaussian−Lorentzian line shapes to determine the atomic percentages of elements 

present in the films.  

Atomic force microscopy (AFM) 

Atomic force microscopy is a high resolution scanning technique used to measure 

local properties of a surface using a probe. A cantilever with a sharp tip at its end is 

used for the scanning. When the tip is brought into proximity of a sample surface, 

forces between the tip and the sample lead to a deflection of the cantilever according 

to Hooke's law. In most cases a feedback mechanism is employed to adjust the tip-

to-sample distance to maintain a constant force between the tip and the sample.[249]  

There are two imaging modes; static or contact mode and a variety of non-contact 

or “tapping” modes, where the cantilever vibrates at given frequencies. In contact 

mode, the tip drags across the sample surface, and while the tip scans the surface, 

the topography of the surface induces a vertical deflection of the cantilever. A 

feedback loop maintains this deflection at a pre-set load force and uses the feedback 

response to generate a topographic image. Close to the surface of the sample, 

attractive forces can be quite strong, causing the tip to “snap-in” to the surface.  

In tapping mode, AFM maps topography by lightly tapping the surface with an 

oscillating probe tip. The cantilever is driven to oscillate up and down at or near its 

resonance frequency by a small piezoelectric element mounted in the AFM. The 

interaction of forces acting on the cantilever when the tip comes close to the surface, 

Van der Waals forces, dipole-dipole forces or electrostatic forces, among others, 

cause a decrease in the oscillation amplitude as the tip gets closer to the sample. The 

height is adjusted to maintain the oscillation amplitude and scan over the 

sample.[250] 

Images are obtained using a Nanowizard II AFM (JPK, Berlin, Germany). Images are 

acquired in air. The tapping mode is used with the tip TESP-V2 (Bruker, AFM 

probes) which has a spring constant of 40 N m−1 and a resonant frequency in the 
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range 280 – 320 kHz. Average roughness  𝑅𝑎 calculation, which gives the deviation 

in height, is done by applying Equation III-1.  𝑧̅ is the arithmetic average height 

calculated from an image described as a matrix with 𝑁 lines and 𝑀 columns and each 

height value 𝑧 is associated to an (𝑥, 𝑦) coordinate.[250] 

𝑹𝒂(𝑵, 𝑴) =  
𝟏

𝑵
 ∑(𝒛(𝒙, 𝒚) − �̅� (𝑵, 𝑴)) 

𝑵

𝒙=𝟏

 Equation III-1 

Phase images need to be obtained with the tapping mode of the AFM and they 

represent the phase lag of the oscillation frequency of the cantilever when interacts 

with the sample. The greater the phase lag is the brighter is going to be the pixel and 

the smaller the phase lag, the darker the pixel. Chemical and physical properties of 

the material such as viscoelasticity, friction or adhesion impact on the phase shift 

and the tip experiences attractive and repulsive forces when it interacts with the 

surface.[250] 

Nanoindentation 

Nanomechanical tests were performed using a triboindenter (Hysitron –TI-950), 

equipped with a Berkovich tip and a 2D - axis transducer. Values of Hardness (H) 

and Elastic Modulus (Er) were extracted from nanoindentation tests.  

Measurements were performed 10 times using partial load-unload function and 

Oliver-Pharr method.[251]  Measurements were performed after 120 seconds of drift 

correction and shallow calibration (5-30 nm) of the indenter on commercially 

available fused quartz (69.6 GPa).  

Small-angle X-ray scattering (SAXS) 

Small-angle X-ray scattering is a small-angle scattering technique by which 

nanoscale electronic density differences in a sample can be quantified. This means 

that it can determine nanoparticle size distributions, resolve the size and shape of 

macromolecules, determine pore sizes and characterize distances of partially 

ordered materials. This is achieved by analysing the elastic scattering behaviour of 

X-rays when travelling through the material, recording their scattering at small 

angles, typically 0.1 - 10°. It belongs to the family of small-angle scattering (SAS) 

techniques along with small-angle neutron scattering, and is typically done using 

hard X-rays with a wavelength of 0.07 - 0.2 nm. Depending on the angular range in 
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which a clear scattering signal can be recorded, SAXS is capable of delivering 

structural information of dimensions between 1 and 100 nm, and of repeat 

distances in partially ordered systems of up to 150 nm.[252]  

In a SAXS instrument a monochromatic beam of X-rays is brought to a sample from 

which some of the X-rays scatter, while most simply go through the sample without 

interacting with it. The scattered X-rays form a scattering pattern which is then 

detected at a detector which is typically a 2-dimensional flat X-ray detector situated 

behind the sample perpendicular to the direction of the primary beam that initially 

hit the sample. The scattering pattern contains the information on the structure of 

the sample. 

2D- Small angle X-Ray scattering (2D-SAXS) patterns were obtained at the Austrian 

SAXS beamline at the Elettra synchrotron (Trieste, Italy), using a 1.54 Å (8 keV) 

incidence X-ray beam. The sample was placed at 82.88 cm from a pixel detector 

(Pilatus1M) on a rotation stage, which allowed to set the glancing angle between the 

incident radiation and the sample to 3°.[253] The samples were prepared onto 

coverslips to allow measurements in Laue geometry. The angular scale of the 

detector was calibrated with Ag-behenate as the reference pattern. 

Confocal laser scanning microscopy (CLSM) 

Confocal laser scanning microscopy is an optical imaging technique with increased 

resolution and depth selectivity. The key feature of confocal microscope is in ability 

to acquire in-focus images from selected depths. Images are acquired point-by-point 

and reconstructed with a computer, allowing three-dimensional reconstructions of 

topologically complex objects. The quality of the image is greatly enhanced over 

simple microscopy because image information from a confocal microscope is 

constructed as one depth level at a time. In effect, the CLSM achieves a controlled 

and highly limited depth of focus.[254]  

Fluorescence images of stained pre-osteoblasts presented in this thesis were 

acquired on a Zeiss LSM 510 confocal microscope (Carl Zeiss, Göttingen, Germany). 
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Scanning electron microscopy (SEM) and Transmission electron 
microscopy (TEM) 

The base of the electron microscopy is the use of electrons to excite a sample and 

obtain an image. The SEM is used for surface imaging and with the TEM electrons 

are transmitted through the specimen to form an image. Incident electrons interact 

with the sample and they can suffer different transformation, but we are focused on 

secondary electrons and transmitted electrons, detected by SEM and TEM, 

respectively. As secondary electrons have a low energy, only the electrons which are 

in the surface of the sample are able to get out from the sample, so these are the 

electrons we are going to measure. In the SEM, the electrons interact with atoms in 

the sample, producing signals that can be detected and contain information about 

the surface topography and composition. The electron beam is scanned in a raster 

scan pattern, and the beam's position is combined with the detected signal to 

produce an image. The most common SEM mode is detection of secondary electrons 

emitted by atoms excited by the electron beam.[255]  

Electrons are very small and can be deflected by hydrocarbons or gas molecules, in 

both cases, to avoid electron deviation a vacuum environment is needed to use the 

electron beam. The illumination source is an electron gun where a cathode 

(filament) is used as electron source generated by thermal emission. Electron 

microscope lenses are electromagnetic and a wrapping of copper wire makes up the 

magnetic field, which is the essence of the lens. The condenser lenses gather the 

electrons to focus the illumination onto the specimen and to reduce spherical 

aberrations. In the TEM, the objective lens is used to focus and magnify the image 

and the objective aperture is used to enhance the contrast of the image, and finally 

the projector lenses further magnify the image, which is projected into the 

phosphorous screen.[256] 

In Chapter 1 and Chapter 3 film surfaces were visualized with a Field Emission 

Scanning Electron Microscopy (FE SEM) Carl Zeiss NTS Supra 40 at the Advanced 

Microscopy Centre FCEN-UBA in second electron imaging (SEI) detection mode. In 

Chapter 1, to visualize film thickness and pores inside the film a transversal cut is 

done and images were taken with a Dual Beam SEM/FIB Helios 450S 

microscope (FEI, Netherlands) at 5 and 10 kV acceleration voltages.  In Chapter 3, 

to visualize the synthesized polyelectrolyte multilayer (PEM), a SEM of type JEOL 
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JSM-6490LV has been used. Sample has been cut with a diamond tip and Pt-Au has 

been sputtered in the preparation chamber GATAN ALTO1000. 

TEM images were collected with TEM JEOL JEM-1400PLUS microscope equipped 

with a Gatan US1000 CCD camera. Films samples were prepared on copper grids 

with a carbon film purchased from EM Resolutions. The films were scratched and a 

deposited on top of the grid with a 5 µL drop of ethanol. In Chapter 3 and Chapter 

4 Energy Dispersive X-ray (EDX) measurements have been performed. A JEOL JEM-

2100F UHR TEM operated at 200 kV in Scanning Transmission Scanning Microscope 

(STEM-BF) equipped with an EDX detector (EDXS, Oxford INCA systems) was used 

for the semi-quantitative analysis of the film composition at different areas on the 

surface. INCA and Origin 8.5 software were used for the analysis of the experimental 

data. 

Inductively coupled plasma mass spectrometry (ICP-MS) 

An Inductively coupled plasma mass spectrometry combines a high-

temperature ICP source with a mass spectrometer. The ICP source converts the 

atoms of the elements in the sample to ions. These ions are then separated and 

detected by the mass spectrometer. Argon gas flows inside the concentric channels 

of the ICP torch. The RF load coil is connected to a radio-frequency (RF) generator. 

As power is supplied to the load coil from the generator, oscillating electric and 

magnetic fields are established at the end of the torch. When a spark is applied to the 

argon flowing through the ICP torch, electrons are stripped off of the argon atoms, 

forming argon ions. These ions are caught in the oscillating fields and collide with 

other argon atoms, forming an argon discharge or plasma.[257] 

The sample is typically introduced into the ICP plasma as an aerosol, either by 

aspirating a liquid or dissolved solid sample into a nebulizer or using a laser to 

directly convert solid samples into an aerosol. Once the sample aerosol is introduced 

into the ICP torch, it is completely desolvated and the elements in the aerosol are 

converted first into gaseous atoms and then ionized towards the end of the 

plasma.[257] Once the ions enter the mass spectrometer, they are separated by their 

mass-to-charge ratio.[257] 

To measure the strontium amount released (Chapter 3 and 4) samples have been 

prepared in 5 % HNO3. Iridium (Ir) was used as internal standard to calibrate the 
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equipment. To quantify the amount of strontium, SrCO3 solutions have been 

prepared at 1, 5, 10, 25, 50, 100 and 200 ppb for the calibration curve using the Sr 

reagent for ICP from Inorganic Ventures. To get accurate results the curve was 

forced to the blank. The calibration curve for strontium is: y = 1.01 x – 0.85, where y 

is the measured intensity (a.u.) and x the strontium concentration (ppm) and has an 

R2 of 0.999. Measurements have been performed at a ICP-MS iCAP Q from Thermo 

Fisher.   

Quartz crystal microbalance with dissipation monitoring 

Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) is a real-time, 

nanoscale technique for thin film formation, interactions and reactions. A QCM 

sensor consists of a thin quartz disc between a pair of electrodes. The sensor can be 

excited to oscillate at its resonance frequency by the application of an alternating 

voltage. The resonance frequency depends on the total oscillating mass of the sensor 

and sensor surface adhering layers, including coupled water. The frequency 

decreases when a thin film is attached to the sensor. If the film is thin and rigid the 

decrease in frequency is proportional to the mass of the film.[258] 

QCM-D is used in Chapter 3 of the thesis for the In situ monitoring of the poly-L-

lysine (PLL) Mw 150-300 kDa and poly (acrylic acid) (PAA) Mw 100 kDa and 

gentamicin complex films assembly and to study the film stability. An E4 QCM-D 

from Q-Sense, Goteborg, Sweden was used. The LbL assembly was performed on 

QSX 303 SiO2 quartz crystals (Q-sense) by alternating the PLL at a 1 mg mL-1 and the 

complex (1 mg mL-1 PAA and 0.3 mg mL-1 gentamicin) at pH 4.5 in NaCl 500 mM 

monitoring the decrease of the resonance frequency. Once the frequency value 

stabilized, the polymer solution has been replaced by NaCl 500 mM (pH 4.5) til a 

plateau was reached. This procedure has been repeated til the desired number of 

layers were deposited. 

Ellipsometry and environmental ellipsometric porosimetry (EEP) 

Ellipsometry measures a change in polarization as light reflects or transmits from a 

material structure. The polarization change is represented as an amplitude ratio, Ψ, 

and the phase difference, Δ. The measured response depends on optical properties 

and thickness of individual materials. Thus, ellipsometry is primarily used to 

determine film thickness and optical constants.[259] 
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Figure III-2. Geometry of an Ellipsometric measurement.[260] 

Data analysis proceeds as follows: After a sample is measured, a model is 

constructed to describe the sample. The model is used to calculate the predicted 

response from Fresnel’s equations which describe each material with thickness and 

optical constants. If these values are not known, an estimate is given for the purpose 

of the preliminary calculation. The calculated values are compared to experimental 

data. Any unknown material properties can then be varied to improve the match 

between experiment and calculation.[259] 

The film thickness is determined by interference between light reflecting from the 

surface and light traveling through the film. Depending on the relative phase of the 

re-joining light to the surface reflection, interference can be defined as constructive 

or destructive. The interference involves both amplitude and phase 

information. The film thickness affects the path length of light traveling through the 

film, but the index determines the light waves’ velocity and refracted angle. Thus, 

both contribute to the delay between surface reflection and light traveling through 

the film. Both refractive index 𝑛 and dielectric constant 𝑘 must be known or 

determined along with the thickness to get the correct results from an optical 

measurement.[259] 

EEP measures the change of the optical properties and thickness of the materials 

during adsorption and desorption of volatile specie. The amount of adsorptive 

inside of pores is calculated from the measured change of the optical characteristics 

of the porous film during the vapour adsorption/desorption. There are several 
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methods for performing these calculations based on various equations (Lorentz–

Lorenz, Newton–Laplace, Bragg–Pippard, etc). The optical characteristics of the 

dense part of the porous media and of the liquid adsorptive are used in these 

calculations. The various equations give similar results, however, the Lorentz–

Lorenz equation is more widely used.[259] 

The technique is based on analysis of the hysteresis loops that appear due to the 

processes of capillary condensation and desorption of a vapour out of porous 

adsorbents. The hysteresis loops appear because the effective radius of curvature of 

condensed liquid meniscus is different during the adsorption and desorption 

processes. The adsorptive vapour condenses in pores even if the vapour pressure P 

is less than the equilibrium pressure of a flat liquid surface P0. Dependence of the 

relative pressure P/P0 on the meniscus curvature is described by the Kelvin 

equation 

1

𝑟1
+  

1

𝑟2
=  − 

𝑅 𝑇

𝛶 𝑉𝐿
𝑙𝑛 (

𝑃

𝑃0
) 

Equation III-2 

where 𝛶 and 𝑉𝐿 are surface tension and molar volume of the liquid adsorptive, 

respectively. The principal curvature radii 𝑟1 and 𝑟2 define pore sizes. In the case of 

cylindrical pores, 𝑟1 = 𝑟2 and  

(
1

𝑟1
+ 

1

𝑟2
) =  

2

𝑟𝑘
 

Equation III-3 

The radius 𝑟𝑘 is often termed the Kelvin radius. If the radius of a cylindrical pore 

is 𝑟𝑝, then 𝑟𝑝 = 𝑟𝑘  + 𝑡 , where 𝑡 is the thickness of the layer already adsorbed on the 

pore walls. Values of 𝑡 are obtained from the data for the adsorption of the same 

adsorptive on a nonporous sample having a similar surface.[261]  

Ellipsometry allows us to measure both the refractive index and the film thickness 

𝑑. In this case the adsorptive volume in pores can be calculated as  

𝑉𝑎𝑑𝑠 =  
𝑉𝑚

𝛼𝑎𝑑𝑠 · 𝑑𝑡

(𝐵1𝑑1 − 𝐵0𝑑0) 
Equation III-4    

 

where 𝑉𝑎𝑑𝑠 is the volume of the liquid adsorptive in the pores, 𝐵0 and 𝐵1 are the 

volume polarizability of the film before and after adsorption, 𝑑0 and 𝑑1 are the film 
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thickness before and after adsorption, respectively, 𝑉𝑚 is the molecular volume of 

the adsorptive and 𝛼𝑎𝑑𝑠 is the polarizability of the adsorptive molecule.[261] 

For titania films in all chapters the measurements were performed in a M2000 VASE 

from Woollam ellipsometer. Ellipsometric and EEP measurements of mesoporous 

silica films in Chapter 4 were performed in a SOPRA GES5A ellipsometer, using 

samples previously washed with absolute ethanol and dried. Film thickness and 

refractive index values were obtained from the ellipsometric parameters Ψ and Δ 

under dry air flux containing variable water vapour pressure 𝑃; 𝑃/𝑃0was varied 

from 0 to 1 (𝑃0 being the saturation water vapour pressure at 25 °C). Water volume 

adsorbed at each value 𝑃/𝑃0  was determined by modelling the obtained refractive 

index according to a three-component (water−air−oxide) Bruggeman effective 

medium approximation. Adsorption−desorption isotherms were obtained by 

plotting the water volume adsorbed by the porous film at each 𝑃/𝑃0. The pore size 

distribution was obtained from the isotherms using the Kelvin equation, taking into 

account the water contact angle in the film.[262]  

Contact angle goniometer 

Contact angle goniometer measurements are essential for understanding the 

wetting characteristics of an analysed surface. The contact angle (CA) is defined as 

the angle made by a sessile drop of liquid (𝑙) in contact with a solid (𝑠) surface and 

is measured according the Young’s equation (Equation III-5) from the side of the 

liquid as seen in Figure III-3.[263] Analysing the CA when a drop of water is placed 

on a surface information about the degree of hydrophobicity or hydrophilicity of 

almost any kind of surfaces can be obtained. [264] 

𝛾𝑠𝑣 = 𝛾𝑠𝑙 −  𝛾𝑙𝑣 𝑐𝑜𝑠𝜃 Equation III-5 

 
Figure III-3. Vector representations of Young’s equation on a sessile drop for measuring 
Young’s contact angle.[265]  
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One of the most common techniques used to measure CA is by goniometry, where 

basically the CA is measured by an image of the drop adsorbed on the specimen’s 

surface. After imaging, a tangent is drawn along the solid-liquid interface and the CA 

is measured from the drop profile. Young’s model is applied only to systems with 

smooth and homogeneous surfaces. For rough and heterogeneous surfaces have 

been established modifications to the Young’s model.  

The Wilhelmy plate technique developed by Neumann is widely used to determine 

the advancing and receding contact angles and therefore the surface free energy of 

analysing surfaces.[266] Contact angle measurements were performed in a Drop 

Shape Analyser – DSA100 from Kruss and a Ramé-Hart 190 CA equipment. 

Dynamic light scattering (DLS) 

Dynamic light scattering is a powerful technique for probing soft matter particles 

mainly at the sub-micron region. DLS is based on the time-resolved measurement of 

the scattered intensity, I(t) produced by particles suspended in a liquid undergoing 

the Brownian motion. The Brownian motion is correlated with the scattered light 

therefore the larger the particle, the slower the Brownian motion will be; the 

diffusion due to Brownian motion of the particles is obtained by recording the rate 

at of fluctuation of the intensity of the scattered light. Subsequently small particles 

display more rapid scattered light intensity fluctuation in contrast with large 

particles. Further information about the random fluctuations in a time-resolved 

manner is provided by the autocorrelation function (Equation III-6).  

𝑔 (𝑡) =
〈𝐼 (𝑡 + 𝑡0)  ×  𝐼( 𝑡0)〉

〈𝐼〉2
 

Equation III-6 

 

For large particles the correlation of the signal takes more time to decay while for 

small particles the correlation decreases rapidly as a consequence of the movement 

of the particles.  

𝐷 =
𝑘𝐵𝑇

6𝜋𝜂𝑅𝐻 
 

Equation III-7 
 

According to Stokes-Einstein equation (Equation III-7) the particle size is given in 

terms of hydrodynamic radius which is defined by the diameter of a sphere that has 

the same translational diffusion coefficient as the particle8. Where 𝐷 is the diffusion 
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coefficient, 𝑘𝐵 is Boltzmann’s constant, 𝑇 is the temperature, 𝜂 is the viscosity of the 

medium and 𝑅𝐻 is the hydrodynamic radius of the analysed particle.[267]  

Measurements were performed in a Zetasizer Nano ZS from Malvern. 

Gentamicin detection 

One of the major problems related to the use of gentamicin, and all aminoglycoside 

antibiotics, in the laboratory is the limited means of quantifying the drug. Since 

gentamicin absorbs ultraviolet and visible light poorly and the molecule lacks 

fluorophores, no direct spectrophotometric or fluorometric method can be applied. 

Therefore, its detection often requires derivatisation.[268] 

Boric acid (0.4 M) is dissolved in distilled water; the pH is adjusted to 10.4 with 

potassium hydroxide solution. O-phthaldialdehyde (OPA) reagent is prepared 

according to following procedure: 0.2 g of OPA is dissolved in 1 mL of methanol and 

the solution is mixed with 19 mL of a 0.4M boric buffer. Then, 0.4 mL of 2-

mercaptoethanole is added and the pH was adjusted to 10.4 with the potassium 

hydroxide solution. This reagent is kept in the dark at 4 ◦C until its use the following 

day. The samples and the 2-propanol are mixed in 1:1 proportion in volume and 

vortexed. Then, the OPA reagent is added in the same proportion and the solution is 

vortexed again.[268,269] For 15 min, prior to measurement, the solutions are heated 

at 60 °C to catalyse the reaction. All the reagents were purchased from Sigma 

Aldrich, except the 2-propanol, which is from Fisher. 

The formed fluorescent complex has its maximum absorption at 340 nm and the 

emission at 455 nm was collected at a Thermo Scientific™ Varioskan™ Flash 

Multimode Reader. 

The gentamicin calibration curve was performed from 0 to 4 µg mL-1 containing 7 

points, prepared by triplicate. The calibration curve can be described with the 

following equation; y = 6.49 + 21.26 x where y is the emission of the OPA-gentamicin 

complex at 455 nm and x is the gentamicin concentration in µg mL-1 and has an R2 

of 0.997.  
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Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT) 

A Fourier Transform Infrared (FTIR) Spectrometer is an instrument which 

acquires broadband near Infrared (NIR) to far Infrared (FIR) spectra.   A FTIR is a 

method of obtaining infrared spectra by first collecting an interferogram of a 

sample signal using an interferometer, and then performing a Fourier Transform 

(FT) on the interferogram to obtain the spectrum.[270]  

An FTIR is typically based on The Michelson Interferometer Experimental Set. The 

interferometer consists of a beam splitter, a fixed mirror, and a mirror that 

translates back and forth, very precisely. The beam splitter is made of a special 

material that transmits half of the radiation striking it and reflects the other half. 

Radiation from the source strikes the beam splitter and separates into two beams. 

One beam is transmitted through the beam splitter to the fixed mirror and the 

second is reflected off the beam splitter to the moving mirror. The fixed and 

moving mirrors reflect the radiation back to the beamsplitter. Again, half of this 

reflected radiation is transmitted and half is reflected at the beam splitter, 

resulting in one beam passing to the detector and the second back to the 

source.[271] 

DRIFT is a surface localized FTIR spectroscopy, since it can provide both chemical 

and structural information for all types of solid surfaces. When infrared radiation 

reaches a sample surface, one or several processes can occur: light can be adsorbed, 

reflected from the surface, or it can penetrate the sample before being scattered. If 

scattering centres, which are fibres in the case of ACM, are randomly oriented, the 

phenomenon is isotropic and generates a diffuse reflectance. The scattered light is 

then collected and relayed to the IR detector, where the absorption by chemical 

groups is revealed.[272] 

Optical Path Difference (OPD) is the difference between the two beams travelling 

through the two arms of an interferometer. Interferogram is the name of the 

signal format acquired by an FT-IR spectrometer. It is usually significantly more 

complex than a single sinusoid, which would be expected if only a single 

wavelength of light was present. The X-axis of the interferogram represents the 

optical path difference. Each individual spectral component contributes a single 

sinusoid with a frequency inversely proportional to its wavelength to this signal. 
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This leads us to the definition of the unit of spectral measurement: the 

wavenumber (cm-1), denoted as n. A wavenumber represents the number of full 

waves of a particular wavelength per cm of length (typically in vacuum, where the 

index of refraction n=1). The advantage of defining the spectrum in wavenumbers 

is that they are directly related to energy levels. A spectral feature at 4,000 cm -

1 spectral location represents a transition between two molecular levels 

separated   by   twice  the  energy  of  a  transition with spectral  signature  at  

2,000 cm-1.[270] 

Once an interferogram is collected, it needs to be translated into a spectrum 

(emission, absorption, transmission, etc.). The process of conversion is through 

the Fast Fourier Transform algorithm.[270] 

In this work FTIR and DRIFT spectroscopy measurements were performed in a 

Nicolet Magna 560 instrument, equipped with a liquid N2-cooled MCT-A detector. 

X-Ray Reflectometry (XRR) 

XRR studies allow determining porosity of porous films.[273] Measurements were 

performed on a Panalytical Empyrean X-ray diffractometer with an incident beam 

of Cu Kα radiation at 1.54 Å and an incident angle of 1°. A divergence slit of 0.38 mm 

and a mask of 10 mm were used for the measurements. Film thickness was 

determined from the Kiessigfringes in the reflectogram. The reflectivity critical 

angle θc (the angle at which the reflected intensity is half the total external 

reflection) allows determining the electronic density (ρe) of the film by using 

Equation III-8; 

𝜌𝑒 =
𝜋 

𝜆2𝑟𝑒 
𝜃𝑐

2 Equation III-8 

where re is the classical radius of the electron (2.813 × 10–6 nm). Taking into account 

Equation III-8, the films porosity can be estimated from XRR data by measuring the 

change in the critical angle (and thus, in the thin film density) when the relative 

humidity (RH) changes from ~ 5 % (i.e. the pores are full of air) to ~ 90 % (i.e. the 

pores are filled with water). For that purpose, XRR measurements were made with 

the films placed inside a controlled humidity chamber. Considering that the increase 

in film density is only due to the presence of water, the water volume fraction 
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(Fv(H2O)) within the film was determined from the measured electronic densities 

using Equation III-9. In this case, the Fv(H2O) calculated is equivalent to the porosity 

(P) of the material. 

𝑃 = 𝐹𝑣(𝐻2𝑂) =  
𝜌𝑒 (𝑓𝑖𝑙𝑚 + 𝐻2𝑂) −  𝜌𝑒( 𝑓𝑖𝑙𝑚) 

𝜌𝑒(𝐻2𝑂)
 

 

Equation III-9 

 

where ρe(film + H2O) is the electronic density of water-filled film (measured at high 

RH), ρe(film) is the electronic density of the film (measured at  low RH) and the 

ρe(H2O) is the water electronic density. 

Cell culture and assays 

In this part, the cell culture methods and several assays to determine the 

osseointegration and antibacterial capacity of the substrates are explained.  

MC3T3-E1 pre-osteoblastic cell line 

The MC3T3 cell line comes from mouse (Mus musculus) calvaria bone. They are 

adherent pre-osteoblasts with fibroblastic morphology and with the ability to 

differentiate to osteoblasts. For the experiments the MC3T3-E1 cell line from Sigma 

Aldrich is used.  

MC3T3-E1 cell culture 

Cells are preserved in cryotubes with culture medium containing 10% glycerine at 

liquid N2 at 196 °C. They are defrozen in 37 °C water bath, transferred to a centrifuge 

tube containing full culturing medium and centrifuged at 150 x g for 5 minutes. The 

cell pellet is resuspended in the full medium and dispensed in a culture flask. They 

are cultured in supplemented α-Minimum Essential Medium (α-MEM, Sigma 

Aldrich) with 10 % Fetal Bovine Serum (FBS, Sigma Aldrich) and 1 % of antibiotics 

(Penicillin-Streptomycin, Sigma Aldrich), referred as full culturing medium. They 

are kept at 37 °C and in a 5 % CO2 atmosphere.  

When cells reach 80 % confluence they are replicated. Using trypsin cells are 

detached from the culture bottle and around the 15-20 % of the detached cells are 

transferred to a new bottle. In this way, cells are always kept in the exponential 

growth phase. Cells are used for experiments till 15 passages to keep the genetic 

integrity of the cell line.  
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Actin cytoskeleton and focal adhesion staining  

The actin cytoskeleton is composed of actin polymers and various associated 

proteins. It mediates a diversity of essential biological functions in eukaryotic cells. 

The organization of the actin cytoskeleton is tightly regulated both temporally and 

spatially. Actin polymers are super organized into a filamentous network that is 

mediated by actin side binding or cross-linking proteins. A disruption of normal 

regulation may lead to cell transformations that have been shown to contain less F-

actin and exhibit atypical coordination of F-actin levels to the cell cycle.[274] 

Focal adhesion and adherent junctions are membrane-associated complexes that 

serve as nucleation sites for actin filaments and as cross-linkers between the cell 

exterior, plasma membrane and actin cytoskeleton. The function of focal adhesions 

is structural, linking the ECM on the outside to the actin cytoskeleton on the inside. 

Focal adhesions consist of integrin-type receptors that are attached to the 

extracellular matrix and are intracellularly associated with protein complexes 

containing vinculin (universal focal adhesion marker), talin, α-actinin, paxillin, 

tensin, zyxin and focal adhesion kinase (FAK). 

To confirm cell adhesion to the substrates Confocal Laser Scanning Microscopy 

(Zeiss LSM510) observations were performed after F-actin, focal adhesions and 

nucleus labelling with actin cytoskeleton and focal adhesion staining kit (FAK100, 

Millipore). Briefly, after reaching the 80% confluence, cells are trypsinized and 

resuspended in fresh medium to a final cell density of 3 × 104 cells mL-1. 1 mL of cell 

suspension is added into each well of 24 multi well cell culture plates. After culturing 

for 2, 24 and 48 h, cells are first permeabilized with 0.1 % Triton-X100 (Sigma-

Aldrich) for 4 min at room temperature. Then, cells are incubated in dilute anti-

vinculin primary antibody for 1 h at room temperature, followed by three times 

wash for 5−10 min each with wash buffer (PBS with 0.05% Tween-20 (Sigma 

Aldrich)), followed by 1 h further incubation with a fluorescein isothiocyanate 

(FITC)-conjugated secondary antibody and tetramethylrhodamine (TRITC)-

conjugated Phalloidin at room temperature. After three times rinsing with wash 

buffer, cells are incubated with 4,6-diamidino-2-phenylindole (DAPI) for 3 min at 

room temperature, followed by a three times wash.  
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MC3T3-E1 cell proliferation 

After reaching 80 % confluence, cells are trypsinized and resuspended in fresh 

medium to a final cell density of 2.5-3 × 104 cells mL-1. 1 mL of cell suspension is 

added into each well of 24 well cell culture plates. A cell proliferation colorimetric 

assay is conducted with the Cell Counting Kit-8 (CCK-8) (Sigma Aldrich) containing 

WST-8[2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-

tetrazolium, monosodium salt], a nontoxic dye used for continuous cell culturing. 

Colorimetric analysis is performed at a certain time periods of cell culturing, in days 

scale, as noted in each of chapter. For this assay, the cells cultured on the samples 

are refreshed with 10 % v/v of CCK-8 containing medium. After 2 hours of 

incubation at 37 °C, aliquot of 150 µL is placed into 96 well cell plate. Optical density 

of reaction solution was acquired using a plate reader (GENios Pro, Tecan) equipped 

with a 450 nm filter. The statistical ANOVA analysis was done in Origin 8.5 software. 

Fisher’s tests were performed to determine statistically significant differences with 

a p < 0.05. 

MC3T3-E1 cell differentiation 

MC3T3-E1 cell line behaves similar to primary calvarial osteoblasts and exhibit high 

levels of osteoblast differentiation after growth in ascorbic acid and inorganic 

phosphate. They form a well mineralized extracellular matrix (ECM) after 10 days 

of osteogenic culture.[275]   

For cell differentiation the full medium is additionally supplemented with 50 µg mL-

1 of L- ascorbic acid and 2mM of β-glycerophosphate, both purchased from Sigma 

Aldrich. 
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 Alkaline phosphatase activity 

Alkaline phosphatase (AP) is an important component in hard tissue formation, 

highly expressed in mineralized tissue cells. The AP in hard tissue formation serves 

as a marker for osteogenic activity has and it occurs at an early step in the 

mineralization process. Proliferating osteoblasts show AP activity in the stage of 

extracellular matrix maturation, being greatly enhanced during in vitro bone 

formation. AP activity is therefore a feasible marker for differentiating and 

mineralizing osteoblastic formation.[276]  

For AP quantification cells are seeded with a density of 5 x 104 cell mL-1 in a 24 

multiwell dish. After 4 days of growth cells are cultured in osteogenic medium for 

20 days following the differentiation during time.  

The AP is quantified with the StemTAG™ Alkaline Phosphatase Activity Assay Kit 

from Cell Biolabs Inc. The AP catalyses the conversion of p-Nitrophenyl Phosphate 

(pNPP) to p-Nitrophenol (pN). p -Nitrophenol is a bright yellow-coloured compound 

which has maximum absorbance at 405 nm. The rate of increase in absorbance from 

pNPP (colourless) to pN (colour) is directly proportional to the AP enzyme activity 

in the serum sample. Following the indications of the fabricant, a calibration curve 

with pN at concentrations ranging from 0.5 mM to 0.9766 µM is performed. The 

calibration curve to know the total amount of pN is obtained from 10 points ranging 

from and is y = 0.04 + 7.51 x  where y is the absorbance at 405 nm and x is the pN in 

mM with an R2 of 0.999.  

Cells are cleaned twice with PBS and lysated with 250 µL lysis buffer for 10 minutes 

at 4 °C. The solution has to be spin down at 12.000 g for 10 minutes and the 

supernatant must be kept. 1 : 1 relation in volume of cell lysate and pNPP are 

incubated for 15 minutes at 37 °C. To stop the reaction the same proportion in 

volume of 1 X stop solution is added and shacked for 30 seconds. 

A Bradford assay is performed to quantify the protein quantity in the lysate and 

normalize the results. 1 part of protein sample is mixed with 30 parts of the Bradford 

Reagent, which consists of a dye, Brilliant Blue G that forms a complex with proteins, 

shifting the absorption maximum from 465 to 595 nm. Bovine serum albumin (BSA), 

from Sigma, is used as protein standard, and a calibration curve is performed with 5 

points ranging from 1 to 2 mg mL-1 of BSA. The calibration curve is y = 0.37 + 0.13 x  
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where y is the absorbance at 595 nm and x is the total amount of protein in mg mL-1 

with an R2 of 0.983. 

The absorbance measurements were performed at a Thermo Scientific™ Varioskan™ 

Flash Multimode Reader and the statistical ANOVA analysis was done in Origin 8.5 

software. Fisher’s tests were performed to determine statistically significant 

differences with a p < 0.05. 

Staphylococcus aureus  

Staphylococcus aureus is by far the most common pathogen found in surgical 

wounds, which can cause surgical site infections.[277] Is a gram positive spherical 

bacteria belonging to the Staphylococci group.  

The used S. aureus strain RN4220 is from Iñigo Lasa’s Laboratory at Instituto de 

Agrobiotecnología, UPNA-CSIC Gobierno de Navarra. This strain is resistant to 

erythromycin.  

S. aureus culture  

S. aureus is cultured in Luria-Bertani (LB) broth from Lennox with 10 µg mL-1 

erythromycin (Sigma Aldrich) overnight at 37 °C under constant shaking at 200 rpm.  

S. aureus growth on surfaces 

After 24 h of growth in LB Broth, the bacteria are centrifuged at 2,500 rpm for 5 

minutes and washed in 10 mM PBS with 150 mM NaCl (pH 7.4) three times. The 

optical density is adjusted to 0.257 at 600 nm with an UV-VIS Varian Cary 50 

spectrophotometer, estimated to give 3 x 108 CFU mL-1. The bacteria solution is 

diluted in LB Broth with 10 μg mL-1 erythromycin (Sigma Aldrich) at a concentration 

of 1,000 CFU mL-1 and 1 mL is seeded onto the substrates placed each of them in a 

well of a 24 well dish. Bacteria is cultured for 24 h at 37 ˚C and then rinsed three 

times with 10 mM PBS to remove non-attached bacteria. After incubation, images 

are taken in the transmission mode in a Cell Axio Observer Micrsocope. To detach 

the adhered bacteria, samples are vortexed at 30,000 rpm for 1 minute inside sterile 

50 mL centrifuge tubes with 10 mL of 10 mM PBS. Dilutions are done in PBS to 

culture 100 μL onto sterile LB Agar (Lennox) with 10 μg mL-1 erythromycin. The 

plates are placed into an incubator at 37 ˚C to allow colonies to grow until visual 

counting is possible (approximately 18 hours). 
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IV. CHAPTER 1 

MTFs with embedded Gentamicin 
and surface modified with rhBMP-2 

 
 

1.1. Motivation 

Since bone and joint inflammatory problems account for 50 % of chronic diseases in 

developed countries,[19] there is an urgent demand for mechanically-resistant and 

bone-compatible orthopaedic implants.[278–280] Implants often fail, requiring 

additional surgery and implant replacement, which is costly and compromises the 

health of the patient. A major reason for the failure of implants is the development 

of bacterial infections at the site of implant. During bone surgery, the surface of the 

implants is susceptible to bacterial infections that can lead to the formation of a 

biofilm and to a compromised immune response at the site of the implant. Aseptic 

loosening of the implants following surgery can result in the premature failure of 

the implant due to poor osseointegration.[281,282] Staphylococcus aureus is among the 

most common bacteria causing implant associated infections and is considered to 

be a major, virulent pathogen that colonizes and infects both hospitalized patients 
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with decreased immunity and healthy immunocompetent people.[283,284] Skin and 

mucous membranes are excellent barriers against local tissue invasion by S. aureus, 

but if any of them is breached due to trauma or surgery, bacteria can enter the 

underlying tissue, creating its characteristic local abscess lesion.[285,286] Antibiotics 

are normally locally administered at the implant site, which effectively avoids the 

formation of bacterial colonies during surgery. However, there is a risk of bacterial 

colonization during the time bone tissue is being regenerated, which last several 

weeks, until the protective capsule is formed and especially after surgery when the 

osseointegration processes has started. To ensure the successful implant 

adaptation, the rational supply of antibiotics is needed and can be achieved by 

coating the implant surface with antibiotics-loaded polymer coatings such as 

polyelectrolyte multilayers, brushes or hydrogels.[287–290] However, the main 

challenge is to obtain a localized supply of the antibiotics with a two-phase release 

profile. An initial burst release at short times is highly desirable as during surgery 

and at the initial phase of bone formation the risk of bacterial infection is larger, but 

at the same time a slow release lasting weeks is also required while the capsule is 

getting regenerated. 

Coating the implant surface with mesoporous film is an attractive method to 

improve biocompatibility of Ti implants, as rougher surfaces promote bone and 

implant interlocking.[291–293] Mesoporous materials have an ordered, homogenous 

distribution of interconnected pores whose diameters are in the 2–50 nm 

range.[131,294–300]  Titania can be synthesized as a mesoporous material without 

compromising its mechanical properties,[301] which are fundamental for bone 

replacement. Mesoporous titania can be used for drug loading by soaking 

mesoporous in a drug solution and once drugs are entrapped their release is slowed 

by the necks that interconnect the mesopores.[302,303] Atefyekta et al.[304] have 

studied the loading and release of gentamicin, vancomycin and daptomycin from 

mesoporous titania films (MTFs) of pore sizes ranging from 4 to 7 nm, but the 

release of the antibiotics from the MTFs has been shown to occur within the first 80 

minutes, which is not desirable for implants, where an initial burst release followed 

by a prolonged one is needed.[304] 
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This chapter shows that the loading of mesoporous titania film with antibiotics and 

its surface functionalization with growth factors improve the antibacterial 

properties of the titania and promote the pre-osteoblasts proliferation and 

differentiation. Gentamicin was used to load mesoporous titania films of 80 nm in 

thickness and 5.7 nm in pore diameter, prepared by spin coating through the 

evaporation-induced self-assembly method. In contrast to previous studies, while 

36 % of the gentamicin is released within the first 6 hours gentamicin release 

prolongs over 35 days. The antibacterial properties of the mesoporous titania were 

further enhanced by immobilizing a growth factor - the recombinant human bone 

morphogenetic protein 2 (rhBMP-2) - on the surface of the film, favouring cell 

attachment and growth. While the antibacterial action of the gentamicin-loaded 

MTF was tested against S. aureus, the proliferation, adhesion, and differentiation 

assays were performed with the MC3T3-E1 pre-osteoblastic cell line.  

1.2. Experimental section 

1.2.1. MTF synthesis and characterization 

For the sol preparation Titanium (IV) Chloride, Ethanol Absolute, Pluronic F127® 

and nanopure water (H2O) were mixed in a molar proportion of TiCl4 : EtOH : F-127 

: H2O = 1 : 40 : 0.005 : 10. The titania precursor is prepared first, adding the TiCl4 to 

the EtOH under vigorous stirring and leave till drops to room temperature. The F-

127 is homogenized under stirring in water and then the titania precursor is added.  

The sol is left stirring for 10 minutes to obtain a homogenous solution.  Ti dense 

films, without pores, are also synthesized, simply by mixing the same reagents in the 

same order except the surfactant. 30 μL previously mixed with EtOH in a volume 

proportion of sol : EtOH = 2 : 1, are spin coated and then placed for 30 minutes in an 

humidity chamber with a controlled relative humidity of 50 %, obtained with 

saturated Calcium Nitrate, Ca(NO3)2, solution in water. They are afterwards 

subjected to a thermal treatment: 30 minutes at 60 ˚C and another 30 minutes at 

130 ˚C. Finally, they are calcinated; first, heating up with a ramp of 1 ˚C min-1 and 

then, keeping them at 350 ˚C for 2 h. Ti dense films are treated in the same way. 

The porous structure was confirmed through TEM imaging and after performing a 

transversal cut of the film, the inner part of the film was observed with the SEM. 

Films thickness and pore size are calculated and analysing the 2D-SAXS pattern the 
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ordering of the mesoporous structure is evaluated. The value of the Elastic Modulus 

(Er) is extracted from nanoindentation tests. 

1.2.2. rhBMP-2 and Gentamicin functionalization and characterization 

A drop of 100 μL of rhBMP-2 (pI 9.15) at concentrations of 10 μg mL-1 and 100 μg 

mL-1 in PBS 10 mM was adsorbed for 1 hour on top of MTFs previously cleaned by 

immersing in absolute ethanol for 30 minutes, 15 minutes in distilled water, dried 

with N2 gun and sterilized for 1h under UV light. After rhBMP-2 adsorption films 

were immersed in gentamicin sulphate solution at 0.2 mg mL-1 in distilled water for 

24 hours and prior to its use films were immersed once in water and left to dry in 

air. 

Water contact angles were measured for different rhBMP-2 concentrations 

adsorbed on MTFs. Three different films at different rhBMP-2 concentrations and 

with/without gentamicin were measured. The presence of sulphur was confirmed 

by XPS atomic composition analysis. AFM images were obtained for samples without 

any functionalization, with rhBMP-2 100 mg mL-1 and films with rhBMP-2 100 mg 

mL-1 and gentamicin.   

1.2.3. Gentamicin release study 

MTFs were immersed for 24 h in 0.2 mg mL-1 gentamicin in water. Then they were 

immersed in water once to remove the exceed of gentamicin and left to dry in air. 

Samples were placed in a well of a 24 multiwell dish. 1 mL of PBS 10 mM was added 

to each well containing the samples and the PBS was removed and replaced for each 

measurement. The release was measured at 30 minutes, 1, 2 and 6 hours and 2, 3, 6, 

7, 10, 21, 28 and 35 days. Experiment was performed in triplicate. 

1.2.4. MC3T3-E1 cell bioactivity experiments 

Cell adhesion was evaluated in MTFs, films functionalized with gentamicin, 10 and 

100 ng mL-1 rhBMP-2 and films dually functionalized. Cell adhesion was evaluated 

after 2 h, 1 and 2 days after cells were seeded onto samples.  

Cell proliferation was followed for 2 h, 1, 2 and 4 days on top of glass, Ti dense 

substrates, MTFs and MTFs with 10 and 100 ng mL-1 rhBMP-2 and dually 

functionalized films.  
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AP was quantified at 2, 5, 10 and 20 days of cell culture in osteogenic medium, the 

differentiation was evaluated for MTFs, MTFs with 100 ng mL-1 rhBMP-2 and dually 

functionalized films. 

All samples were prepared under sterile conditions and dried in air prior to its use. 

Samples are prepared in triplicate. 

1.2.5. Antibacterial study 

MTFs were functionalized with gentamicin and dually functionalized MTFs were 

prepared with 100 ng mL-1 rhBMP-2 and gentamicin. As control MTFs were used. 

Samples were prepared in triplicate for the experiment.  Films were dried in air and 

placed in wells of 24 multiwell dishes.  

Detached bacteria were diluted in 10 mM PBS; for samples with gentamicin the 

dilutions were 1/1, 1/10 and 1/100, and for MTFs 1/10,000, 1/100,000 and 

1/1,000,000.  

1.3. Results and discussion 

1.3.1. MTF synthesis and functionalization with rhBMP-2 and gentamicin  

The porous structure of the MTFs was confirmed by TEM and SEM characterization 

(Figure IV-1a and IV-1b). The insert in Figure IV-1a shows the SAXS pattern of the 

MTF. The elliptic shape of the pattern suggests the presence of multiple domains of 

locally ordered pores.[138] Calculated interplanar distances show an interpore 

distance of 11.5 nm and 3.9 in the (-110) and (110) planes, respectively. The 

contraction due to the calcination process at 350 °C is of 65 %, as calculated from 

differences in the interpore distances at (-110) and (110) planes.[305] From the 

analysis of water adsorption-desorption isotherms (Figure IV-1d) obtained by 

Environmental Ellipsometric Porosimetry (EEP), it can be concluded that the MTF 

has a porosity of 30.7 %, and a pore size of 5.7 nm in diameter connected by necks 

of 4.2 nm in diameter. The calculated film thickness from the EEP measurements is 

of 80 nm, a value which is in agreement with the thickness of around 90 nm obtained 

from the SEM image of the transversal cut of the MTF (Figure IV-1c). 
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Figure IV-1. Mesoporous titania film (MTF) structural characterization by electron 
microscopy, 2D-SAXS and EEP. a) TEM image, insert; 2D-SAXS pattern, b) SEM image of the 
surface, c) SEM image of a transversal cut and d)  EEP of water vapour adsorption and 
desorption. 
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Nanoindentation measurements, Figure IV-2, show an elastic modulus of 25 ± 5 

GPa, smaller than the elastic modulus for dense titanium surfaces, which is ranged 

between 100 and 120 GPa.[31] Nevertheless, this value  is in agreement with the 

range of elastic modulus for bone, which lays between 4 and 30 GPa depending on 

bone type,[23] and also with the  values previously reported for porous titania 

films.[306] 

 
Figure IV-2. Nanoindentation studies performed on mesoporous titania films. a) Shows the 
partial-load/unload vs displacement curve used for the tests and b) the results of the 
analysis of each unload section for Elastic modulus (Er). 
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MTFs are functionalized with rhBMP-2 and loaded with gentamicin. The 3D 

structure of the BMP-2 has a size of around 7 nm x 3.5 nm x 2.5 nm,[307] which does 

not allow the molecule to enter inside the mesoporous structure and it will remain 

in the surface of the films. To confirm the presence of both rhBMP-2 and gentamicin, 

the atomic percentage of S/Ti is obtained through high resolution XPS spectra in the 

spectral range of Sulphur (S) and Titanium (Ti) (Figure IV-3). As gentamicin 

sulphate is used, the S is used as an indirect marker to ensure the presence of 

gentamicin. The peak corresponding to S 2p3/2 is more pronounced in the MTF 

loaded with antibiotic, coated with protein or both loaded and coated, as compared 

to the bare MTF. Because first the rhBMP-2 is adsorbed on top of the MTF and then 

the film is immersed in gentamicin for a day, it could be the case that the rhBMP-2 

desorbs from the titania surface during the loading. Although there is no S in the 

bare MTF, a S/Ti atomic relative percentage of 0.41 ± 0.09 % is obtained, which 

corresponds to the noise of the equipment. When the MTF is loaded with gentamicin 

the S/Ti relative percentage increases to 2.03 ± 0.09 %. If the MTF is functionalized 

with rhBMP-2 without gentamicin loading the S/Ti increases to 3.44 ± 0.99 %. The 

S/Ti ratio for the MTFs functionalized with rhBMP-2 and loaded with gentamicin is 

the lowest: 1.48 ± 0.32 %. The loss in S content could be a consequence of the 

incorporation of gentamicin after the rhBMP-2 is adsorbed on top of the MTF; 

however, the calculated standard error is high. Additional proof of the loading and 

functionalization were obtained from contact angle measurements. Figure IV-4 

shows the changes in contact angle of water following rhBMP-2 functionalization 

and gentamicin loading. Bare MTF has a contact angle of 13.4 ± 0.30° (Figure IV-

4a). When the MTF is loaded with gentamicin or functionalized with rhBMP-2 the 

contact angle changes to 73.15 ± 1.07 ° (Figure IV-4b) and 72.47 ± 2.60 ° (Figure 

IV-4c), respectively. For the MTF functionalized with rhBMP-2 and loaded with 

gentamicin the contact angle increases to 90.95 ± 2.19 ° (Figure IV-4d). Moreover, 

gentamicin loading was proven by release experiments and by measuring the 

antibacterial properties of the MTF after loading.   
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Figure IV-3. XPS high resolution spectra of Titanium (Ti) and Sulphur (S) and S/Ti atomic 
percentage calculation on top of each graph for each film. a) Ti and b) S of MTF, c) Ti and d) 
S of MTF with gentamicin, e) Ti and f) S of MTF with 100 ng mL-1 rhBMP-2 and g) Ti and h) 
S of MTF with 100 ng mL-1 rhBMP-2 and gentamicin substrates.  
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Figure IV-4. Contact angle measurements. a) Bare MTF b) MTF with gentamicin, c) MTF 
with 100 ng mL-1 rhBMP-2 and d) MTF with 100 ng mL-1 rhBMP-2 and gentamicin. 

MTFs show a smooth topography as confirmed by AFM imaging (Figure IV-5a, IV-

5b and IV-5c), with a roughness of around 190 pm. When the protein is deposited 

on top of the MTF, the roughness increases to 250 pm, meaning that the surface loses 

homogeneity and confirming the presence of rhBMP-2 (Figure IV-5f). The height 

profile shows singularities with a few nm in thickness, which are not observed in the 

bare MTF. Phase image also confirms the presence of a different material on top of 

the MTF (Figure IV-5e); when the height changes also a phase shift is detected. 

When the MTF functionalized with rhBMP-2 is loaded with gentamicin some rhBMP-

2 is loosed from the surface (Figure IV-5g) and the roughness decreases to 210 pm 

(Figure IV-5i). The presence of proteins is indicated in the image by blue arrows.  
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Figure IV-5. AFM images (height, phase and height section) of MTF, MTF with 100 ng mL-1 
rhBMP-2 and MTF with 100 ng mL-1 rhBMP-2 and loaded gentamicin. a) height, b) phase 
and c) section of MTF substrates, d) height, e) phase, f) section of MTF with 100 ng mL-1 
rhBMP-2 substrate, showing an increase in the height, and g) height, similar to MTF with 
100 ng mL-1 rhBMP-2 sample, h) height and i) section image of MTF with 100 ng mL-1 
rhBMP-2 and loaded with gentamicin. 

1.3.2. Gentamicin release from MTFs 

The release profile of the gentamicin is plotted in Figure IV-6. There is a fast release 

at initial times; within the first 6 h around the 36 % of the total gentamicin liberated 

is released. This initial burst release is required to avoid bacteria adhering and 

infecting the implant during surgery, which is known to be the riskiest period for 

infection. After the burst release a second slower and prolonged release takes place. 

Release is evaluated up to 35 days, where a plateau is reached and this second 

release profile is within the time frame required for the implant to be integrated in 
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the tissue and for the formation of the protective fibrous capsule.[308] This second 

release step suggests that gentamicin is retained inside the pores interacting with the 

titania surface. Angelomé el al.[309] have shown that hydroxyl groups in dialcohols can 

be incorporated into MTFs by complexation of  Ti(IV) centres present in the pore 

surface.[309] Moreover, they have demonstrated that the dialcohols can be released in 

aqueous solution at specific pH values. Thus, gentamicin can be anchored to the titania 

surface through oxo bridges due to the presence of three hydroxyl groups in the 

molecule, which would explain the slow release of gentamicin from the MTF. 

The obtained results on gentamicin liberation are significantly different from 

Atefyekta et al.[304], where a fast release of gentamicin takes place in around 80 min 

from mesoporous titania with pore sizes similar to ours. However, their mesoporous 

titania films are less ordered and 200 nm thick, twice as thick as the ones presented 

in this chapter. It is possible that the pores in the synthesized MTFs are more 

interconnected and with narrowed necks and this causes that only the 36 % of 

gentamicin is released fast as gentamicin is more difficulted to leave the pore mesh. 

In the work by Atefyekta et al.[304] the authors have recognized that the release was 

fast and the methodology that they used to measure the antibiotic release could also 

be a reason for the differences observed in the present chapter.  Atefyekta et al.[304] 

have measured gentamicin loading and release by Quartz Crystal Microbalance with 

Dissipation (QCM-D) from MTF deposited on top of a QCM-D crystal. Both upload 

and release were measured from variations in the frequency of the crystal and for 

the release studies the authors apply a continuous flow of PBS at a flux of 50 mL min-

1, which is a relatively high flux and should trigger a faster liberation of gentamicin. 

Besides, in this work, the release was performed in static conditions. 
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Figure IV-6. Release profile of gentamicin from MTF. Region I shows the burst release (the 
insert is a zoom of region I) and region II the sustainable release. The release is followed up 
to 35 days by emission measurements at 455 nm. 
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1.3.3. Biocompatibility and bioactivity evaluation  

Initial cell adhesion on biomaterials plays a key role on cell proliferation, migration 

and differentiation. The focal adhesions (FA) and extracellular matrix (ECM) 

interactions involve integrins that bind different ECM proteins with the external end 

and cytoskeleton via adapter proteins such as talin, α-actinin, filamin and vinculin. 

FAs are based on this integrin-adapter protein−cytoskeleton complex. Osteoblasts 

anchor on a substrate via integrin receptors, which are involved in processes named 

as “outside-in-signalling” and “inside-out-signalling” between the ECM and the cell. 

These pathways involving integrins can regulate subsequent cell adhesion, 

migration, proliferation, and differentiation.[310,311] 

The MC3T3-E1 osteoblast precursor cell line is used to evaluate adhesion to the 

functionalized MTFs. Figure IV-7, IV-8 and IV-9 show confocal laser scanning 

microscope images of the cells cultured on the bare MTFs, MTFs functionalized with 

rhBMP-2 and MTFs functionalized with rhBMP-2 and gentamicin, respectively. The 

actin filaments (F-actin) are stained with phalloidin, red fluorescence in the second 

row and vinculin is stained with FITC, green fluorescence in the first row. The 

nucleus is stained with DAPI and is represented in blue in the merge images (third 

row), where all the labelled cell parts are shown. From the F-actin images can be 

seen that cultured cells in the three substrates exhibit a similar size and a well-

arranged cytoskeleton with distinctive stress fibres inside the cytoplasm, especially 

at the border of the cells. However, cell shape is different after 48 h of culture (third 

column). When the MTF was modified with rhBMP-2 (Figure IV-8) cell shape was 

more elongated if compared with cells cultured 48 h on the bare MTFs (Figure IV-

7) or rhBMP-2 and gentamicin (Figure IV-9).  This cell shape and higher filopodia 

[312] means that cells were interacting better when rhBMP-2 is present on the 

surface. FA allow cells to interact with the surrounding environment; vinculin can 

interconnect signals in the focal adhesions and is a key regulator.[313,314]  In the 

images of vinculin staining (first row) in all substrates lots of green spots can be 

found.  After 2 h of cell incubation on the substrates (first column) focal adhesions 

can also be perfectly distinguished, meaning that cells adhere well to the substrates 

from initial times, which will later improve cell proliferation.[310,313]  
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Figure IV-7. CLSM images of vinculin (first row), actin (second row), the merge of the actin, 
the vinculin and the nucleus (third row) and the zoom of the merge image (fourth row) at 
2h (first column), 24h (second column) and 48h (third column) of growth of MC3T3-E1 cell 
line on MTFs substrates at 63x. 
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Figure IV-8. CLSM images of vinculin (first row), actin (second row), the merge of the actin, 
the vinculin and the nucleus (third row) and the zoom of the merge image (fourth row) at 
2h (first column), 24h (second column) and 48h (third column) of growth of MC3T3-E1 cell 
line on MTF with 100 ng mL-1 rhBMP-2 substrates at 63x. 
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Figure IV-9. CLSM images of vinculin (first row), actin (second row), the merge of the actin, 
the vinculin and the nucleus (third row) and the zoom of the merge image (fourth row) at 
2h (first column), 24h (second column) and 48h (third column) of growth of MC3T3-E1 cell 
line on MTF with 100 ng mL-1 rhBMP-2 and gentamicin substrates at 63x. 
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During the thesis glass substrates, dense titanium substrates or MTFs are used 

indistinctly as controls for experiments with cells. In Figure IV-10 is shown that any 

of them is suitable for MC3T3-E1 pre-osteoblast proliferation. MC3T3-E1 pre-

osteoblasts are cultured for 1, 2 and 7 days on glass, dense titanium and MTF 

substrates. As seen there is no significant difference on cell density for the evaluated 

time periods and any of the three substrates are used as controls from now on. 

 

Figure IV-10. Proliferation of MC3T3-E1 pre-osteoblasts cultured on Glass, Ti dense and 
MTF substrates for 1, 2 and 3 days.  

To study the influence of the rhBMP-2 on cell proliferation, cells are cultured in 

substrates coated with rhBMP-2. The deposition of rhBMP-2 on the MTF was 

performed from solutions with 10 and 100 ng mL-1 rhBMP-2 concentration. Results 

are plotted in Figure IV-11. After 7 days, the culture is confluent, meaning that the 

surface is completely covered by cells forming a monolayer, and no difference can 

be distinguished between the MTF functionalized with rhBMP-2 and the bare MTF 

control. Within the first day cells proliferate at the same rate and cell density is the 

same for the three evaluated substrates. After 2 days of culture, substrates with 100 

ng mL-1 of rhBMP-2 show an enhanced cell proliferation rate if compared with cells 

cultured on MTFs and MTF with 10 ng mL-1 rhBMP-2 (p < 0.05). After 4 days of 

culture, same differences are maintained, but cell density is also higher when 

rhBMP-2 concentration is low (10 ng mL-1) if compared with MTFs. As previously 

seen in Figure IV-8, cells are more expanded and showing higher filopodia in 

presence of rhBMP-2. When the interaction of cells with a substrate is better it is 
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known that proliferation is also improved.[310,313] If MTFs are loaded with 

gentamicin and functionalized with rhBMP-2, differences are observed regarding 

the proliferation rates of MC3T3-E1 cells on films only functionalized with rhBMP-

2.  At day 2, between samples with rhBMP-2 or samples with rhBMP-2 and loaded 

with gentamicin there is no difference on cell density and in both cases the density 

is higher if compared with cell density on bare MTFs. If cells are cultured for 4 days, 

there is a difference between samples without and with gentamicin. After 4 days of 

cell culture, for the MTF with rhBMP-2 loaded gentamicin, the cell proliferation rate 

is not as high as without gentamicin, and the proliferation rate decreases in a 46 % 

with a value comparable to bare MTFs. 

 

Figure IV-11. Proliferation of MC3T3-E1 pre-osteoblasts cultured on MTF, MTF with 10 ng 
mL-1 rhBMP-2, with 100 ng mL-1 rhBMP-2 and with 100 ng mL-1 rhBMP-2 and gentamicin 
substrates for 2 h, 1, 2 and 4 days. * means that the difference is statistically significant (p < 
0.05) 

Alkaline phosphatase is one of the gene markers in the early stage of osteogenic 

differentiation.[162] Figure IV-12 shows the AP activity of cells cultured on the MTFs, 

MTFs with rhBMP-2 and MTFs with rhBMP-2 and gentamicin. After cells reach 

confluence, they are differentiated for 20 days and AP activity is measured at 

different steps to evaluate differences in differentiation rates. At day 2 and day 5 of 

differentiation there is no difference between the evaluated substrates and at day 

20 all cells are differentiated and is not possible to see any difference among 
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substrates as well. Only at day 10 of cell culture in osteogenic medium differences 

can be seen. For MTF coated with rhBMP-2, with or without gentamicin, the 

differentiation is more than the double of the differentiation on bare MTFs. This 

result was expected as the effectiveness of rhBMP-2 in promoting pre-osteoblast 

differentiation has been demonstrated in  a large number of works.[168,315–317]  

 

Figure IV-12. Alkaline phosphatase activity after 2, 5 10 and 20 days of MC3T3-E1 pre-
osteoblastic cell culture in osteogenic medium on MTF, MTF with 100 ng mL-1 rhBMP-2 and 
MTF with gentamicin and 100 ng mL-1 rhBMP-2 substrates. * means the difference is 
statistically significant (p < 0.05) 

1.3.4. Evaluation of the antibacterial properties of the rhBMP-2 and 
gentamicin functionalized MTFs 

The evaluation of the antibacterial capacity of MTF loaded with gentamicin and 

rhBMP-2 functionalized is performed by incubating S. aureus for 24 h on top of the 

films.  Figure IV-13a shows CFU grown on the LB agar plates. Green ticks mean 

bacteria have grown on the agar plates and CFU counting is possible and red crosses 

means that S. aureus has not grown.  4.75 x 106 ± 5.8 x 105 CFU are counted for MTF, 

in Figure IV-13b a zoom of CFU grown on agar plates after growing in MTF is shown. 

However, when the MTF contains gentamicin, with or without rhBMP-2, bacteria are 

not grown, as can be seen in the zoom in Figure IV-13c.  Figure IV-13d and IV-13e 

show a cell observer image of S. aureus grown for 24 h on top of the MTF and the 

MTF functionalized with rhBMP-2 and loaded with gentamicin, respectively. The 

bare MTF surface is completely covered by the bacteria; the image shows black dots 
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which are the coccus. The surface of the gentamicin loaded film shows very few dots, 

so some bacteria attach but are not alive, as seen in the agar plate culture, where no 

CFU are found. 

 

Figure IV-13. CFU counting after S. aureus growth on agar plates for 24h and cell observer 
images of S. aureus growth on MTF and MTF functionalized with rhBMP-2 and gentamicin. 
a) Three samples with cultured S. aureus for 24 h on LB agar plates. S. aureus cultured in 
1/10,000 dilution for MTF and 1/1 dilution for MTF with 100 ng mL-1 rhBMP-2 and 
gentamicin and MTF with gentamicin. b) Zoom of Sample 1 of agar plates with cultured S. 
aureus on MTF, c) Zoom of Sample 1 of agar plates with cultured S. aureus on MTF with 
rhBMP-2 and gentamicin and cell observer images of 24 h of growth of S. aureus on d) MTF 
and d) MTF with rhBMP-2 and gentamicin substrates. 
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1.4. Conclusions and perspectives 

Highly mesoporous titania films with a 30.7 % porous volume have been shown here 

to encapsulate gentamicin in the porous matrix to an extent that the films display 

antibacterial properties. At physiological pH, the release of gentamicin in 10 mM PBS 

shows a two-step release profile. The porous structure of the titania results in an 

initial burst release of gentamicin within the first 6 h with a liberation of around the 

36 % of the total released gentamicin. The burst release is followed by a slow release 

of the remaining gentamicin that lasts over weeks. This release profile fits with the 

initial requirements of avoiding the formation of bacteria colonies on the implant 

while surgery is conducted, releasing most of the gentamicin during first hours, 

while the rest of the gentamicin is released in lower doses for a period lasting weeks 

avoiding infection while the tissue is being reconstituted.  

MTFs functionalized with rhBMP-2 improve MC3T3-E1 cell adhesion and 

proliferation. However, when the MTF is also loaded with gentamicin, proliferation 

rate is diminished but still is comparable to the proliferation rate for bare MTFs. Cell 

differentiation is not affected by the presence of gentamicin, and when MTFs are 

functionalized with rhBMP-2 the differentiation rate increases at day 10 to the 

double of the rate of cells cultured onto MTFs. 

The efficacy of the functionalized substrates against S. aureus bacterial infection is 

shown seeding 1,000 CFU of bacteria on the gentamicin loaded MTFs. Bacteria do 

not proliferate, hinting the potential of the gentamicin loaded MFT for avoiding S. 

aureus infections.  

Overall, this chapter shows the potential of mesoporous titania for antibiotic loading 

and delivery for avoiding bacterial infection. The release profile of gentamicin 

matches with the requirements of a burst release during operation and immediately 

after followed by a sustainable release of gentamicin until the bone tissue is 

reconstituted. The additional modification of the MTF with rhBMP-2 has a positive 

effect on proliferation and cell adhesion that seems to overcome negative effects 

from gentamicin on pre-osteoblasts. The versatility of the mesoporous substrates 

has been shown; it is possible to tune the mesoporous structure by changing the 

surfactant used for the synthesis, and film thickness can also be tuned in order to 

modify the number of loaded molecules inside the film. Also, many different types 
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of molecules can be entrapped inside the film or adsorbed on the top, giving 

different functionalities to the substrate. 
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V. CHAPTER 2 

Antibacterial PEMs based on PLL 
and PAA-gentamicin complexes 
 

 
 

2.1. Motivation 

The widespread nature of bacterial infections and their increasing resistance to 

antibiotics has led to the development of antibacterial coatings in multiple medical 

settings, especially on bone implants.[70] The surface of implants is susceptible to 

numerous bacterial infections mainly because of the formation of a surface biofilm 

and the compromised immune response at the implant/tissue interface.[318] Once a 

biofilm is formed, it protects adherent bacteria from the host defence system and 

bactericidal agents via several mechanisms.[47,319,320] The biofilm becomes a source 

of pathogens and infections, being the cause of so called nosocomial 

infections.[48,124,321] Nosocomial infections are secondary to the main condition of 

the patient, and can have lethal consequences following operations such as bone 

replacement or open heart surgery.[322–324] Because biofilms can form on almost any 
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material present in a surgery room, prevention of their formation can be 

fundamental for patient survival. 

 The encapsulation of antibiotics in polymer matrixes is an attractive approach for 

the fabrication of antibacterial coatings. These coatings are usually made out of 

hydrogels, layer-by-layer (LbL) assemblies, polymer brushes or porous polymer 

scaffolds.[70,223,325–333] A major drawback of the encapsulation of antibiotics in 

polymer films is the difficulty in achieving a slow release of antibiotics. In addition, 

often the coating degrades accompanied by liberation of the antibiotics all at once, 

or at a rate faster than required.[70,334] 

The LbL technique has been used for the engineering of scaffolds and implants to 

assemble growth factors and other molecules that facilitate tissue regeneration or 

enhance cell adhesion.[335–341] Molecular complexes, stable colloidal aggregates of 

molecules bound by week interactions, have also been employed as building blocks 

for the fabrication of PEMs. For example, Romero et al.[342] have shown that 

complexes of alginate and the antiTNF-α antibody can be assembled in LbL, while 

the direct assembly of the antibody does not result in stable layers because of the 

weak charge of antiTNF-α. 

Recently, Moskowitz et al.[124] proposed an antibacterial coating with an initial burst 

release of gentamicin followed by slow release. The coating was formed by a 

tetralayer unit containing gentamicin sulphate, poly acrylic acid (PAA) and a 

synthetic poly(β-amino ester) (Poly 1), combined as PAA/Poly 1/PAA/Gentamicin. 

Gentamicin is a frequently used antibiotic, an aminoglycan displaying three primary 

amine groups, which can interact with PAA through electrostatic interactions and 

hydrogen bonding. The entire film comprised 200 tetralayers, achieved over 5 days 

using an automated fabrication method.[124] 

In this chapter, a simple method for the fabrication of antibacterial coatings 

employing the LbL technique is proposed (Figure V-1). Using PAA-gentamicin 

complexes as building blocks with poly-L-lysine (PLL), a coating in just a few 

assembly steps with enough gentamicin loading to exhibit antibacterial properties 

is assembled.  The supramolecular architecture presented in this chapter is 

particularly appealing for the development of antibacterial coatings to prevent 

acquisition of nosocomial infections in various medical settings. 
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2.2. Experimental section 

 

Figure V-1. A) Scheme of the formation of gentamicin and PAA complexes in 500 mM NaCl 
at pH 4.5. B) LbL assembly of PLL and PAA-gentamicin complexes. The LbL assembly was 
performed in 500 mM NaCl at pH 4.5 in 4 steps: 1) 15 min incubation of 100 µL drop of 1 
mg mL-1 PLL, 2) removal of the PLL that has not been adsorbed by dipping the substrate in 
500 mM NaCl pH 4.5, 3) 15 min incubation of 100 µL drop of PAA-gentamicin complexes 
and 4) removal of the complexes that have not been adsorbed by dipping the substrate in 
500 mM NaCl  pH 4.5. This cycle is repeated 4 times. C) Scheme of PEMs showing 4 bilayers 
of PLL/PAA-gentamicin complexes grown on top of titania films. 

2.2.1. Poly (acrylic acid) and gentamicin complex preparation and 
characterization 

PAA and gentamicin complexes were prepared by mixing PAA and gentamicin 

sulphate at different ionic strengths: 2 M, 500 mM and 10 mM NaCl and H2O. 

Complexes were prepared with PAA 1 mg mL-1 and with different concentrations of 

gentamicin, preparing complexes with 0.1, 0.25, 0.3 and 0.45 mg mL-1 of gentamicin.  

The growth of the complexes was followed measuring the size by dynamic light 
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scattering immediately after complex preparation, after 2 h and after 4 h. In all cases 

measurements were repeated 10 times. For TEM imaging, a drop of 5 µL of the 

complexes was deposited on a TEM grid, left for 5 min on the grid to ensure that the 

complexes were deposited, cleaned 3 times with drops of distilled water and 

incubated for 5 min with a 5 µL drop of ammonium molybdate ((NH4)2MoO4, Sigma 

Aldrich) at 20 ng mL-1 pH 6.7, finally the grid was cleaned three times with water 

drops. 

2.2.2. Poly (acrylic acid) and gentamicin complexes and poly-L-lysine 
multilayer preparation and characterization 

PEMs have been fabricated by means of the LbL technique on top of MTFs (synthesis 

described in Chapter 1). The titania was first cleaned with absolute ethanol and 

dried at 100 °C. The PAA-gentamicin complexes and PLL solutions were prepared in 

500 mM NaCl at a pH of 4.5. A drop of 100 µL with PLL 1 mg mL-1 was left incubating 

on titania for 15 min at room temperature, then it has been removed and rinsed 3 

times with 500 mM NaCl pH 4.5. Then, the same volume of PAA-gentamicin complex 

was deposited on the surface left 15 min, removed and the surface rinsed again 3 

times as before. The alternating assembly of PLL and the complexes has been 

repeated 4 times to obtain a multilayer of 8 layers. Films were synthesized in sterile 

conditions to study their antibacterial capacity. Samples were dried in air for AFM 

measurements and previous to their use for the experiments on gentamicin release.  

To visualize the PEM, SEM images of a transversal cut have been taken and by AFM 

imaging surface roughness was calculated. PEMs were washed with nanopure water 

and left to dry at room temperature.  

To measure the total amount of gentamicin the PEM is disassembles in 1mL 500 mM 

NaCl at pH 13. 

2.2.3. QCM-D Measurements 

The assembly of PLL/PAA-gentamicin complexes multilayers was monitored via 

QCM-D, Q-Sense E4 system. The LbL assembly was performed on QSX 303 SiO2 

quartz crystals. The PLL and the complexes are injected to the 4-sensor chamber 

with the help of a peristaltic pump and left under incubation for at least 10 min. For 

each deposition the solution was fluxed until frequency was stabilized, then a 
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rinsing step of at least 10 min with NaCl 500 M (pH 4.5) took place. Experiments 

were conducted at 23 °C and the flux velocity of the solution was 100 µL min-1. 

To study the stability of the multilayer under different pH conditions the multilayers 

were exposed in the QCMD chamber to NaCl 500 mM solutions with pHs ranging 

from 5 to 13. The solutions were fluxed at 5.77 µL min-1. Fluxing solutions have been 

changed once frequency reaches a plateau. 

2.2.4. Gentamicin release study 

Gentamicin release was studied by placing the PEMs in a 24 multiwell dish. 1 mL of 

10 mM PBS was added to the wells containing the PEM. The release has been 

measured at 30 min, 1, 2, 6, 28, 55 h and 3, 6, 7, 10, 21, 28 and 35 days. The PBS was 

removed for each measurement from the well and replaced with fresh PBS solution. 

2.2.5. Antibacterial study 

PEMs were dried in air and placed in 24 multiwell dishes. Round coverslips of 16 

mm of diameter were immersed for 24h in gentamicin 0.3 mg mL-1 in water and 

cleaned by immersing the samples one time in distilled water, this samples were 

used as control. Samples were prepared in triplicate. Dilutions were made in PBS; 

for samples with the PEM coating the dilutions were 1/1 and 1/10, and for glass 

controls 1/1,000 and 1/10,000. 10 µL of each dilution was placed in LB Agar plates 

for overnight incubation. Visual counting of the CFU has been performed and an 

average and the standard error were calculated. 
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2.3. Results and discussion 

2.3.1. PAA-gentamicin complex synthesis and characterization 

PAA-gentamicin complexes were prepared by mixing PAA and gentamicin solutions 

(Figure V-1A) at different gentamicin and NaCl concentrations at pH 4.5. At this pH 

the amines of gentamicin are largely protonated and positively charged since the 

pKa for amino groups in gentamicin are in the range of 5.5 and 9. It can also be 

expected that carboxylate groups from PAA are to a large extent deprotonated and 

negatively charged as the pKa for PAA is 3.9.[74,119] Therefore complex formation has 

been performed at pH 4.5 which is an intermediate value between the pKa of PAA 

and the pKa of gentamicin and ensures that the two molecules are oppositely 

charged and with enough charge to form the complexes. Salt concentration is tuned 

to obtain the most stable complexes with the highest gentamicin concentration. As 

observed by Dynamic Light Scattering measurements, DLS, (Figure V-2), without 

salt (Figure V-2a) or with 10 mM NaCl (Figure V-2b), complexes start to form with 

0.1 mg mL-1 of gentamicin, but they do not show a stable size when the concentration 

of gentamicin is 0.25 mg mL-1 or higher. In both cases the size of the complexes 

increases by more than 100 % after 4 h. In water, for 0.45 mg mL-1 gentamicin, 

complexes start to precipitate after 4 h. The increase in size of the complexes implies 

also that the number of complexes in bulk will diminish. However, DLS also shows 

smaller complexes present in solution that do not precipitate. With 500 mM NaCl, 

complexes start to form with at least 0.3 mg mL-1 of gentamicin, but if the 

concentration of gentamicin is increased to 0.45 mg mL-1 the size of the complexes 

is not stable, changing with time (Figure V-2c). After 4 h the size of the complexes 

is 3 times larger than their size measured immediately after preparation. At high salt 

concentration (2 M) the formation of complexes is suppressed (Figure V-2d).  
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Figure V-2. Changes in the hydrodynamic diameter of PAA-gentamicin complexes over time 
for different NaCl and gentamicin concentrations at pH 4.5. DLS measurements of 
complexes measured immediately after being prepared, and at 2 and 4 h after preparation. 
Complexes were prepared with 0.1, 0.25, 0.3 and 0.45 mg mL-1 gentamicin in a) H2O, b) 10 
mM, c) 500 mM and d) 2 M NaCl. 
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Antibacterial activity of the coating can be enhanced with larger gentamicin content 

and larger gentamicin concentration leads to larger and more unstable complex size. 

The largest gentamicin concentration that leads to complexes with relatively stable 

size within the 2 hours that the layer-by-layer assembly lasts has been proved to be 

0.3 mg mL-1. the evolution of the hydrodynamic diameter of the complexes over time 

has been monitored using constant gentamicin concentration (0.3 mg mL-1) and 

varying salt concentration (0 – 2 M) (Table V-1). At high salt concentration (2 M), 

the formation of complexes is suppressed. The resulting hydrodynamic diameter of 

~ 30 nm corresponds to free PAA of 100 kDa under the same NaCl and pH 

conditions. At low salt concentration (10 mM), the size of the complexes is relatively 

large, >1500 nm, leading to the precipitation after 4 hours. It has been found that at 

500 mM of NaCl the complexes maintained their size (120-300 nm), during the first 

4 hours after formation. More detailed analysis of size distributions revealed the 

presence of two peaks of 25 and 180 nm, just after mixing both components (Figure 

V-3a). After 2 h the smallest peak disappears while the second peak shifts to higher 

values and is narrower, meaning that the larger complexes increase their size at the 

expense of the smaller ones, most likely decreasing in number as well At 4 h, the 

peak is slightly shifted to higher sizes and seems to continue to narrow, but it is 

considered that the size distribution has practically not changed from 2 to 4 h after 

assembly of the complexes, which is the time when the PEM is assembled. On 

contrary to DLS analysis, TEM characterization of the sample two hours after mixing 

shows the presence of small and large complexes ranging from 60 to 350 nm in 

diameter (Figure V-3b), suggesting that the scattering intensity of the small 

complexes at 2 h is shielded by the much larger scattering of the large complexes. 

Overall, for the further experiments the complexes that were prepared with 0.3 mg 

mL-1 gentamicin and 500 mM of NaCl were selected. 
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 Hydrodynamic diameter (± SD) 

Ionic Strength 0 h 2 h 4 h 

H2O 382.1 ± 80.8 nm 774 ± 147 nm 831.6 ± 143.6 nm 

NaCl 10 mM 596.3 ± 102.6 nm 1121 ± 171.1 nm 1570 ± 229.3 nm 

NaCl 500 mM 177.7 ± 48.7 nm 276.3 ± 72.5 nm 293 ± 59.3 nm 

NaCl 2 M 29.67 ± 5.8 nm 30.13 ± 8.8 nm 33.74 ± 11.5 nm 

Table V-1. Time evolution of the hydrodynamic diameter of PAA-gentamicin complexes 
prepared with 0.3 mg mL-1 gentamicin and different NaCl concentrations at pH 4.5. DLS 
measurements of complexes were conducted immediately after preparation, and 2 h and 4 
h after complex preparation.  Complexes were prepared with 0.3 mg mL-1 of gentamicin in 
water and 10 mM, 500 mM and 2 M NaCl. The standard deviation calculated from three 
replicates is shown. 

 

 

 

 

Figure V-3. a) Intensity plot of size distribution at different times after complex formation 
for PAA-gentamicin complexes prepared in 500 mM NaCl at pH 4.5 with 0.3 mg mL-1 

gentamicin. b) TEM image of complexes 2 h after preparation.  
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2.3.2. Layer-by-Layer assembly of PLL/PAA-gentamicin complexes 

PLL and PAA-gentamicin complexes were alternately deposited on titania films, as 

depicted in Figure V-1B. The complexes are left for 2 h to form, and then are used 

for the PEM assembly and as seen in DLS measurements of the hydrodynamic 

diameter (Table V-1) the size after 2 h keeps constant for the following 2 h at 

around 300 nm in diameter. The assembly of the 4 bilayers of PLL and complexes 

was monitored by the Quartz Crystal Microbalance with dissipation technique 

(QCM-D) (Figure V-4a). With the increase of a material on top of QCM-D sensor the 

frequency shifts to lower values.[343] The deposition of each layer of PLL and 

complexes causes the increase of frequency in the following order 8, 11, 51, 73 Hz 

and 34, 57, 85 and 191 Hz, respectively. Observed frequency changes suggest that 

the LbL assembly follows an exponential growth (Figure V-4b).[34],[46–48] Data is 

fitted to the exponential function 𝑦 =  𝑦0 + 𝐴 · 𝑒𝑅0·𝑥, where 𝑦0is the offset with a 

value of -34.71, 𝐴 is the initial value (42.42) and 𝑅0 the rate 0.67. 𝑦 corresponds to 

– 𝛥𝑓 and 𝑥 to each bilayer, the obtained R2 is 0.999. The exponential growth implies 

an increase in the amount of PLL and PAA-gentamicin complexes per layer as the 

number of assembled layers increases. Since complexes can be considered as 

spherical nanoparticle of ~ 100 nm the deposition of each layer results in an 

increase in the area available for assembly of the next PLL layer. The increase in 

available free area allows for the deposition of more PLL than on a planar surface. 

This situation repeats as the assembly proceeds. Consequently, the top layer will 

contain more complexes and more gentamicin than the layers below, as depicted in 

Figure V-1C. To evaluate the chemical stability of the film, the PEMs immobilized to 

QCM-D sensor was exposed to 500 mM NaCl at different pHs, from pH 5 to 13 

(Figure V-4c). The pH is increased in one-unit step exposing the film to a continuous 

flow for periods ranging from 5 to 12 hours and then changing to a solution with 

higher pH. The frequency remains stable with variations of around 20 Hz, until pH 

13, where the frequency increases in around 600 Hz till reach the initial value (close 

to 0 Hz).  The stability experiments in the QCM-D show that the multilayer is stable 

at physiological pH, 7.4, and suitable for biomedical applications.[347] 
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Figure V-4. QCM-D monitoring of layer-by-layer assembly of PLL and PAA-gentamicin 
complexes prepared with 0.3 mg mL-1 gentamicin and film degradation. a) LbL assembly of 
4 bilayers of PLL and PAA-gentamicin (0.3 mg mL-1) complexes in 500 mM NaCl and pH 4.5, 
b) plot of frequency changes after each bilayer is deposited, and c) film degradation in 500 
mM NaCl increasing the pH from 5 to pH 13. 
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Detailed SEM analysis PEM cross-section (Figure V-5) revealed an irregular 

topology with the highest measured around 2 μm in height, correlating thus the high 

frequency changes monitored by QCM-D. The surface inhomogeneity was further 

confirmed by AFM analysis. Figure V-6 shows AFM images of height (a, d, e and h), 

phase (b and f) and height profile (c and f) of PLL/PAA-gentamicin complex PEMs. 

The roughness calculated from the height images of the PEM coating is 13.9 and 7.9 

nm for the 15 x 15 µm (Figure V-6a) and 5 x 5 µm (Figure V-6e) scans, respectively. 

The discrepancy in the roughness between the two images from the same sample 

confirms the data obtained from SEM (Figure V-5), that the surface of the PEMs is 

rather inhomogeneous.[348] The inhomogeneity on the surfaces is probably the 

result of the large size dispersion shown by the complexes as observed by TEM and 

DLS. Phase images (Figure V-6b and f) show that the lag in the phase remains 

constant over all scanned regions, suggesting that the LbL assembly is continuous 

without uncovered regions. From the height profile peaks of more than 100 nm can 

be distinguished, as well as regions with peaks of only a few nm and intermediate 

peaks with heights of around 50 nm can also be identified (Figure V-6c and g). 

These images together with the QCM-D monitoring leads to associate the 

exponential growth of the PLL-complex PEM to the ‘Island Model’. This model 

proposes that the first component is adsorbed in the surface forming “islands” and 

after several deposition steps the height and radius of the islands increases making 

the surface more and more heterogeneous and increasing the amount of material 

adsorbed.[110,349,350] 

 
 

Figure V-5. SEM cross-sectional image of the PEM deposited on top of the MTF. The glass 
and the MTF can be distinguished, as well as the PEM grown on top. 
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Figure V-6. AFM images of the assembly of 4 PLL/PAA-gentamicin (0.3 mg mL-1) complex 
bilayers. a) Height, b) phase, c) height of section in a and d) 3D graph of the height of 15 µm 
x 15 µm image and e) height, f) phase, g) height of section in a and h) 3D graph of the height 
of 5 µm x 5 µm image. 
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2.3.3. Gentamicin release from PEMs 

The advantage of encapsulating antibiotics close to the implant-tissue interface is 

the effective antibiotic release that leads to the side effects minimization.[351] Despite 

the PEMs being stable at physiological pH, it is observed a release of gentamicin from 

the films. At physiological pH (7.4), gentamicin is less protonated than at pH 4.5, the 

pH at which the complexes were prepared. The deprotonation of gentamicin should 

weaken the interaction of the antibiotic with PAA, which should trigger gentamicin 

release. On the contrary, PAA has a larger charge at higher pHs. PAA and PLL 

multilayers fabricated with free PAA are stable at physiological pH. Since the 

stability of the film is largely due to the interaction of PLL with PAA, a stable film 

releasing gentamicin is possible. The amount of gentamicin is determined by 

measuring the fluorescence emission at 455 nm of the complex formed by 

gentamicin and the OPA reagent. The total amount of gentamicin in the PEM is 5.35 

µg. There is a burst release of gentamicin within the first 6 hours, which liberates 

around 48 % of the total gentamicin (insert in Figure V-7). Then, after the burst 

release, a prolonged release takes place. Gentamicin is slowly released in a period 

from 6 hours to 35 days, after which a plateau is reached. This release profile of 

gentamicin encapsulated in the PEM has the characteristics required to avoid 

infections after a replacement surgery: (1) during the critical short-term post-

implantation period, which lasts several hours, a burst release of gentamicin takes 

place. This burst release is needed to inhibit the initial adhesion of bacteria during the 

surgery, where there is the largest risk for infection as the body is opened and exposed. 

(2) A continued and slow release takes place beyond the initial first hours lasting weeks 

to avoid bacterial infection during the formation of a protective fibrous capsule and 

tissue integration on the  implant.[308] 
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Figure V-7. Release profile of gentamicin from PEMs formed of 4 bilayers of PLL/PAA-
gentamicin complex on top of titania thin films. Region I shows the burst release (the insert 
is a zoom of region I) and region II the sustainable release. The release is followed up to 35 
days using emission measurements at 455 nm. 
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2.3.4. Evaluation of the antibacterial properties of the PEMs 

To demonstrate the antibacterial activity of the films, an S. aureus strain was seeded 

on top of the PLL/PAA-gentamicin PEMs. Samples were prepared under sterile 

conditions and a glass immersed in gentamicin was used as a control. Approximately 

1,000 CFU of S. aureus were seeded at 37 °C for 24 h on three replicates for each 

sample. Transmission images show very few bacteria adhering to the surface of the 

film, while a larger number of bacteria are observed on the control (Figure V-8a and 

b). This result suggests that the PEM has antibacterial properties. When bacteria 

were detached and incubated for 24 h on agar plates, the CFU for bacteria grown on 

control surfaces was 3 orders of magnitude higher than that for bacteria grown on 

the PEMs (Figure V-8c).  Bacteria were detached from the surfaces and incubated 

for 24 h on agar plates before counting. 

 

Figure V-8. S. aureus growth on PAA-gentamicin PEM coatings and on glass substrates 
immersed in gentamicin. Cell observer images following 24 h of incubation of S. aureus on 
a) PEM coating on top of titania films and b) glass immersed in gentamicin, insert images 
have a zoom of 4 x. c) CFU of the adhered bacteria on the PEM and glass with gentamicin.  



Antibacterial PEMs based on PLL and PAA-gentamicin complexes                                  Chapter 2 

103 
 

2.4. Conclusions and perspectives 

Stable PAA-gentamicin complexes were synthesized by mixing 0.3 mg mL-1 

gentamicin and 1 mg mL-1 PAA in 500 mM NaCl at pH 4.5. Complexes display a 

hydrodynamic diameter ranging from 160 to 300 nm and are stable within 4 hours.  

PEMs were constructed by alternating PLL and PAA-gentamicin complexes by 

adsorption on top of titania up to 4 bilayers. The assembly of the PAA-gentamicin 

complexes with PLL shows an exponential growth and a large number of PAA-

gentamicin complexes are deposited with only a few assembled layers. 

 The PLL/PAA-gentamicin PEMs are stable until pH 13. However, PEMs release 

gentamicin at physiological pH values. Release studies in 10 mM PBS showed an 

initial burst release within the first 6 h followed by a slow release of gentamicin 

lasting up to 5 weeks. The antibacterial properties of the PEMs were tested by 

seeding an S. aureus strain on the LbL films. The CFU counts for bacteria grown on 

the PEMs after 24 h is 3 orders of magnitude smaller than those grown on a glass 

control immersed in gentamicin.  It is important to note that only 4 bilayers of PLL 

and the complex are required to achieve a film with antibacterial properties. 

During surgery and while the body is exposed to the environment, a fast release of 

gentamicin can be crucial for avoiding the attachment of bacteria. At the same time, 

a continuous supply of gentamicin in lower doses is required during the 

osseointegration process until the tissue is reconstituted to ensure that bacteria do 

not attach and proliferate at the site of the implant. The initial burst release of 

gentamicin followed by a long-lasting slow release over weeks makes the PAA-

gentamicin PEMs especially attractive as an antibacterial coating for implants, and 

highlights the potential of these films to prevent nosocomial infections following 

implant surgery. 
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VI. CHAPTER 3 

SrTiO3 mesoporous coating for 
enhanced osseointegration  
 

 
 

3.1. Motivation 

Since the role of an implant is the replacement of the bone, it needs to mimic the 

biological environment and mechanical properties of the bone. Several strategies 

have been proposed to improve interaction between titanium implants and the 

regenerating bone tissue.[79,125,352–354] Topography plays an important role on the 

osseointegration process with cells adhering better to rougher surfaces. Indeed, 

titania with nanoscale surface features has been shown to favour 

osseointegration.[126,127] To increase the bioactivity of titania, growth factors can be 

deposited on top of the implant or the titania can be doped with bioactive 

ions.[352,355–357]   

Several ions present in the human bone mineral apatites like calcium (Ca2+), 

magnesium (Mg2+), niobium (Nb5+), phosphate (PO43–), silicate (Si4–), strontium 

(Sr2+), and zinc (Zn2+) are known to promote osteoblastic precursor cell 

differentiation.[182,185,194,197,199,205,216,218,236,358] The incorporation of some of these 

bioactive ions in titania, in particular strontium, has been shown to induce growth 

factor signalling pathways to osteoblastic precursor cell differentiation.[182]  

Approximately 98 % of the strontium present in our body is localized in bone 

tissue.[237] Strontium has a beneficial effect on the bone metabolism due to its 

anabolic and antiresorptive activity[359] and has been shown to be a promising 

therapeutic agent to heal bone disease, as example, strontium ranelate has been 
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used in clinics for long time.[360] As oral medicament it has been proved to act on 

both the desorption and formation of bone,[361] but currently is not recommended 

due to the side effects it has when is administered orally.[362] Besides, the side effects 

are suppressed when the drug is administered locally.[363] Strontium itself promotes 

osteogenic differentiation of mesenchymal stem cells by up-regulating the 

expression of osteoblast marker genes, such as Runx2, osteocalcin (OCN), 

osteopontin (OPN), bone sialoprotein (BSP), and type 1 collagen, and increasing 

Alkaline Phosphatase (AP) activity and matrix mineralization.[212] 

Strontium incorporated in titania has been shown to lead to an enhanced 

osseointegration and an improved differentiation of pre-osteoblastic cells.[352,364–366] 

The strontium incorporated in titania, however, must be released in the 

environment of the regenerating tissue for a positive action. Besides the amount of 

Sr incorporated in the titania the area available for ion exchange plays an important 

role in the release of Sr as it will only be delivered in the media when it is located on 

the surface.[352,367]  Rougher titania surfaces for example have been shown to deliver 

Sr more effectively than plain titania as a consequence of the larger available 

surface.[182,352,364] A possible mean to increase the surface area for ion delivery is the 

use of mesoporous titania. Mesoporous materials have an ordered, homogenous 

array of pores with highly controlled diameters in the 2-10 nm range.[294]  Titania 

can be synthesized as a mesoporous material without compromising its mechanical 

properties,[301] which is fundamental for bone replacement. Moreover, a 

mesoporous titania film (MTF) can be easily synthesized on top of non-porous 

titania with the same biocompatibility properties as the non-porous titania. 

A  large surface is available in mesoporous films that can be used for the delivery of 

Sr or other bioactive element present in the formulation of the mesoporous 

material.[262] The larger surface results in a larger amount of Sr potentially available 

for delivery in the media if compared with non-porous titania with the same content 

of Sr. Moreover, the mesoporous material can be designed to present interconnected 

pores linked by narrow necks. Once the Sr is released from the surface of the pore it 

will have to escape through the pores, retarding its release from the film. 

Importantly, it is possible to incorporate strontium or calcium into the MTF during 

the synthesis process simply by adding ionic salts to the sol, as demonstrated by 
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Grandfield et al.[243] By this way the ions will be incorporated to the titania matrix, 

up to 0.01 : 1 of Sr : Ti relation in moles.[243] Strontium salts are not very soluble,[368–

370] and depending on the synthetic pathway applied to obtain the mesoporous films 

and the solvents used, the concentration of the strontium salt that can be 

incorporated during the synthesis varies. Grosso et al.[371] also incorporated Sr in 

MTFs and found a 1 : 1    Sr : Ti relation but only in nanocrystals located in the walls 

of the mesoporous structure, being Sr not homogeneously distributed.[371] 

In this chapter strontium titanate mesoporous films (SrTiMFs) are prepared by sol-

gel chemistry employing the evaporation induced self-assembly method (EISA). 

Pore and neck size of the films are measured by Environmental Ellipsometric 

Porosimetry (EEP). Film thickness and surface are visualized by Scanning Electron 

Microscopy (SEM), and pores by Transmission Electron Microscopy (TEM). Small-

angle X-Ray Scattering (SAXS) patterns are obtained to determine the pore ordering 

and mechanical properties of the SrTiMFs are examined by nanoindentation. Sr 

concentration and molar relation to Ti is determined by X-ray Photoelectron 

Spectroscopy (XPS). To assure the Sr is homogeneously distributed in the Ti 

mesoporous structure Energy Dispersive X-Ray (EDX) analysis is performed in 

different points of the film. Sr release is followed by Induced Coupled Mass 

Spectroscopy (ICP-MS). TEM imaging is also performed after the release study to 

evaluate film stability. Cell attachment, proliferation and differentiation studies are 

performed with the MC3T3-E1 pre-osteoblastic cell line showing the enhanced 

bioactivity of the SrTiMFs. 

3.2. Experimental section 

3.2.1. SrTiMF synthesis and characterization 

For the sol preparation Titanium (IV) Chloride (≥ 99.0%, TiCl4), Strontium chloride 

hexahydrate (SrCl2 x 6 H2O), Ethanol Absolute (Synthesis grade, EtOH), Pluronic 

F127® and nanopure water (H2O) were mixed in a molar proportion of TiCl4 : EtOH 

: SrCl2 : F-127 : H2O = 1 : 40 : 0.2 : 0.0056 : 10. The titania precursor was prepared 

first, adding TiCl4 to the EtOH under vigorous stirring and leaving it till drops to 

room temperature.  SrCl2 was homogenized under stirring in water, then the F-127 

was added under stirring and finally the titania precursor is added. The sol is left 

stirring for 10 minutes to obtain a homogenous solution.  
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For the films preparation, 30 μL of the sol were mixed with EtOH in a volume 

proportion of sol : EtOH 2 : 1 and spin coated at 68 rpm for 30 seconds on glass slices. 

Films are placed for 30 minutes in a humidity chamber with a relative humidity of 

50 % and then they are subjected to a thermal treatment: 30 minutes at 60 ˚C and 

another 30 minutes at 130 ˚C. Finally, films are calcinated; first, heating up with a 

ramp of 1 ˚C min-1 and then, keeping them at 350 ˚C for 2 h. As control MTFs were 

synthesized following the same procedure described in Chapter 1.  

Pores were visualized through TEM imaging and field topology was analysed 

through FE-SEM. Ellipsometric and EEP measurements were performed to measure 

film thickness and pore and bottleneck diameters. 2D-SAXS patterns were analysed 

to study pore ordering. The value of the elastic modulus (Er) is extracted from 

nanoindentation tests.  

3.2.2. Strontium detection and release study 

The presence of strontium was confirmed by XPS atomic composition analysis. To 

ensure the strontium was homogeneously distributed in the mesoporous titania a 

Scanning Transmission Scanning Microscope with Energy Dispersive X-Ray detector 

(STEM-EDX) was used for the semi-quantitative analysis of the film composition at 

different positions on the surface.  

To measure the total amount of Sr in the SrTiMF, films were immersed in 5 mL HNO3 

> 99.5 % puriss overnight (around 18 h) to complete dissolution of the film, then 

distilled water was added till 5 % concentration of HNO3 was obtained for ICP-MS 

measurements. As control, MTFs were also dissolved following the same procedure. 

3 samples for each film type were evaluated.  

To study the release of the strontium, samples were placed in wells of 12 multiwell 

dishes with 2 mL 10 mM PBS and the strontium released was measured at 5, 15, 30 

min, 1, 2, 6 h and 1, 2 and 7 days. Samples were prepared in triplicate. TEM images 

were acquired on samples previously immersed in 10 mM PBS for 24 h. 

 

 

 



SrTiO3 mesoporous coating for enhanced osseointegration                                               Chapter 3 

109 
 

3.2.3. MC3T3-E1 cell bioactivity experiments 

To confirm cell adhesion to the substrates CLSM images were taken after F-actin, 

focal adhesions and nucleus labelling. Cell proliferation was evaluated by 

colorimetric analysis. Measurements were done by triplicate at 2 h, 1, 2 and 3 days.  

Alkaline phosphatase activity was measured after 5, 10, 15 and 20 days of cell 

culture in osteogenic medium.  

3.3. Results and discussion 

3.3.1. SrTiMF synthesis and functionalization  

SrTiMFs are synthesized by sol-gel chemistry applying the EISA process. The block 

co-polymer Pluronic F127® was used to generate the mesoporous structure.  TEM 

and SEM imaging confirmed the porous structure (Figure VI-1a and b); the pores 

are seen as white spots in TEM and darker spots in SEM images. The pore ordering 

is not well defined, some regions present disordered pores, while other seem to 

present well-ordered pores, with an array compatible with the typical body centred 

cubic array of mesopores typical of F127 templated oxides. The insert in Figure VI-

1a refers to the 2D-SAXS pattern of the SrTiMF, taken at 90°: a circular pattern is 

observed, compatible with mesoporous thin films in which pores in the xy plane are 

polyoriented, matching what it is observed by electron microscopy.[138] The 

calculated interplanar (-110) distance from the SAXS pattern is 11.1 nm, typical of 

F127 templated mesoporous oxides. [305] From the water adsorption and desorption 

isotherms (Figure VI-1c) a porous volume of 30 % and a pore diameter of 5.5 nm is 

determined. The bottlenecks connecting the pores have a diameter of 3.2 nm. The 

SrTiMFs film thickness is 85 nm. These results also confirm that the inner porous 

volume of the film is accessible to water. In these conditions Sr present in the walls 

could get in contact with cell media and be released. Due to the high porous volume 

of the film the surface area largely increases if compared with non-mesoporous 

titania films.[372] Then, a larger surface will be in contact with the media allowing 

higher release of Sr from the surface. Sangle el at.[373] have synthesized a 

mesoporous SrTiO3 film by pulse laser deposition and obtained rod-like 

mesoporous structure of 20 nm with a wall thickness of 5 – 7 nm. When films are 

around 100 nm in thickness the surface, compared to a non porous surface of same 

area, is increased in a 2,500 %.[373]  
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Figure VI-1. SrTiMF structural characterization by electron microscopy, SAXS and EEP. a) 
TEM image, insert 2D-SAXS pattern taken at 90°, b) SEM image of the surface and c) water 
adsorption-desorption isotherm, obtained by EEP. 

Nanoindentation measurements showed an elastic modulus of 25 ± 5 GPa for the 

MTF (Figure IV-2 in Chapter 1) and 35 ± 7 GPa for the SrTiMF (Figure VI-2). The 

incorporation of strontium to the mesoporous structure does not affect the Elastic 

modulus of the films; moreover the Elastic module is improved compared with plain 

MTF. However, in any case the value is smaller than for dense titanium surfaces, 

which ranges between 100 and 120 GPa,[31] but at the same time the Elastic modulus 

of SrTiMF is in agreement with the range of elasticity of bone, which lays between 4 

and 30 GPa depending on bone type.[23]  
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Figure VI-2. Nanoindentation study a) Shows the partial-load/unload vs displacement 
curve used for the tests and the results of the analysis of each unload section for Elastic 
modulus (Er) of b) the SrTiMF. 

The Sr : Ti molar relation in the  films synthesis was 0.2 : 1. This relation has been 

the highest possible to obtain an optimal solution for synthesis, since if the 

concentration of SrCl2 was augmented it started to precipitate resulting in an  

inhomogeneous solution. XPS measurements have confirmed that this relation is 

kept after film synthesis, where the resulting relative Sr/Ti atomic percentage is 

around 20.8 ± 0.4 %. Compared with Grandfield et al.[243]  that obtained a 0.01 : 1 of 

Sr : Ti molar relation, the synthesized MTFs have incorporated 20 times more 

strontium in the film, and very importantly in  an homogeneous distribution. 

Figure VI-3a shows the XPS spectra of a SrTiMF, and Figure VI-3b and VI-3c show 

the high resolution spectra of Ti and Sr, respectively. It must be noticed that chlorine, 

which should appear at 199 cm-1, is not detected in the XPS spectra confirming that 

strontium is integrated in the titanium network and not forming SrCl2 crystals. By 

means of ICP-MS the total strontium amount is obtained once the film is digested. 

The total amount of strontium in the SrTiMF resulting from the measurement of 3 

samples is 2.29 ± 0.53 µg.  

Figure VI-4 shows representative STEM and EDX spectra at different spots of the 

SrTiMFs. Figure VI-4a and VI-4b correspond to STEM micrographs taken of 

different parts of the film. The spectra shown (Figure VI-4c) are obtained in three 

spots from same region. There are no regions where Ti or Sr bands are missing, 
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meaning that the mesoporous network has a homogeneous distribution of the 

elements and no phase segregation occurs in the mesoporous oxide.  

 

 

 

Figure VI-3. XPS a) Survey spectra and high resolution b) Ti and c) Sr spectra from SrTiMF.  
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Figure VI-4. a) and b) STEM images of SrTiMF and c) EDX analysis of the points in image a 
(white crosses) and area in image b (white rectangle). 

3.3.2. Strontium release  

Figure VI-5 shows the release profile of Sr measured by ICP-MS. After 1 h, 38.58 ± 

1.77 % of Sr is released and after 8 h the percentage of released Sr is 43.76 ± 7.99 %. 

The next measurements at 24 h show a 44.41 ± 6.61 %. of Sr released. The release 

curve shows a fast release within the first 8 h, where the maximum release is 

reached. Then, the release is very slow but continuous. The release characteristics 

of the mesoporous could be further tuned by  modifying pore size, porous structure 

or film thickness.[372] The larger the surface area and thickness of the SrTiMF the 

higher the concentration of ions available for release will be.[372,374] Figure VI-6 is a 

representative TEM image of the SrTiMF after being immersed for 24 h in 10 mM 

PBS for the release experiment. As can be seen, the films do not suffer any noticeable 
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dissolution and the porous structure is maintained without any appreciable 

changes. 

 

 

 

Figure VI-5. Percentage of strontium loss from SrTiMF over time measured with ICP-MS. 

 

 

 

Figure VI-6. TEM representative micrograph of SrTiMF after being immersed 24 h in 10 
mM PBS. 
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3.3.3. Biocompatibility and bioactivity evaluation  

The MC3T3-E1 osteoblast precursor cell line is used to evaluate adhesion to the 

MTFs (In Chapter 1) and SrTiMFs. Figure IV-7 and VI-8 show CLSM images of the 

cells cultured on the MTFs and SrTiMFs, respectively. The actin filaments (F-actin) 

are stained with phalloidin, which can be appreciated as red fluorescence in the 

images displayed in the second row of the figure. Vinculin is stained with FITC, and 

the staining is shown in green in the first row of images. The nucleus is stained with 

DAPI and is represented in blue in the Merge images (third row), where all the 

labelled cell parts are shown. In the F-actin images it can be seen that cultured cells 

on SrTiMF exhibit a similar size as when cells are grown on MTF and an arranged 

cytoskeleton with distinctive stress fibres inside the cytoplasm, especially at the 

border of the cells. However, cell shape is different after 48 h of culture (third 

column). Compared to cells cultured on top of MTFs, when strontium is incorporated 

in the MTF the cell shape is more elongated and cells show higher filopodia.[312] This 

means that  cells are better interacting with the surface in presence of strontium and 

that they are well attached to the surface.  

Vinculin interconnects signals in the focal adhesions and is a key regulator in the 

environment sensing.[313,314] The first row of images in Figure VI-7 shows the 

vinculin staining in the green channel. Green dots can be distinguished at the end of 

the actin filaments of cells cultured on SrTiMFs. After 2 h of cell incubation on the 

substrates (first column) focal adhesions can be perfectly distinguished, meaning 

cells adhere well to the substrates already at initial times and adhesion will later 

improve cell proliferation.[310,313]  
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Figure VI-7. CLSM images of vinculin (first row), actin (second row), the merge of the actin, 
the vinculin and the nucleus (third row) and the zoom of the merge image (fourth row) at 
2h (first column), 24h (second column) and 48h (third column) of growth of MC3T3-E1 cell 
line on SrTiMF substrates at 63x. 
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Figure VI-8 shows results on cell proliferation for MC3T3-E1 cells cultured on top 

of MTFs and SrTiMFs. After 7 days the culture is confluent, meaning that the surface 

is completely full of cells forming a monolayer, and no difference can be 

distinguished between samples.  Within the first day cells proliferate at the same 

rate and cell density is the same for both substrates.  After 2 days of culture on 

SrTiMFs cell proliferation rate is enhanced if compared with cells cultured on MTFs 

(p < 0.05). At day 2, the proliferation on MTF containing Sr is a 64 % higher if 

compared with plane MTFs, and after 3 days of culture the difference is of 52 %. As 

previously seen in Figure VI-8, cells are more expanded and showing higher 

filopodia, as the interaction is better, it is known that proliferation is also 

improved.[310,313]  These results confirm as expected that, strontium enhances pre-

osteoblastic cell proliferation,[375–377] but more importantly how the Sr is released 

from the mesoporous structure makes the substrate a good candidate to enhance 

cell attachment and proliferation at initial times after the implant is placed in the 

human body. 

 

 

Figure VI-8. Proliferation of MC3T3-E1 pre-osteoblasts cultured on MTF and SrTiMF 
substrates for 2 h, 1, 2 and 3 days. * means the difference is statistically significant (p < 0.05). 
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Alkaline phosphatase (AP) is one of the gene markers in the early stage of osteogenic 

differentiation[162] and his activity has also been evaluated. Figure VI-9 shows AP 

activity of the cells cultured on the MTFs and SrTiMFs. After cells reach confluence, 

they are differentiated for 20 days and the AP activity is measured at different 

differentiation times to evaluate differences in the degree of differentiation. 

Differences between both types of substrates (p < 0.05) are observed just after cells 

are cultured in osteogenic medium. Only 5 days after cells are cultured on top of the 

substrates, the AP activity is more than the double on SrTiMFs compared to MTFs. 

Following measurements at 10, 15 and 20 days also confirm enhanced cell 

differentiation on SrTiMF.[375–377]    

 

 
Figure VI-9. Alkaline phosphatase activity after 5, 10, 15 and 20 days of MC3T3-E1 pre-
osteoblastic cell culture in osteogenic medium on MTF and SrTiMF. * means the difference 
is statistically significant (p < 0.05). 
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3.4. Conclusions and perspectives 

SrTiMFs display a porous and accessible mesoporous structure. Around 20 % of 

strontium has been incorporated in the MTFs, which is the highest value for Sr in 

mesoporous titania reported. Moreover, Sr and Ti are homogenously distributed in 

the mesoporous structure without any phase segregation. 

The high porous volume of around 30 % results in a large interface for strontium 

exchange with the media since pores are accessible for water as demonstrated by 

EEP measurements. At physiological pH in 10 mM PBS 44 % of the strontium present 

in the films is released within 8 h. 

SrTiMFs improve MC3T3-E1 cell adhesion and proliferation if compared with MTFs 

resulting in more elongated cells with more defined stress fibres and focal points. 

Cell differentiation is enhanced in a 100 % after 3 days if strontium is present in the 

mesoporous structure. 

This chapter shows that it is possible to synthesize doped mesoporous titania films 

with a high concentration of bioactive ions such as strontium and with a large 

surface area for ion exchange, due the mesoporous structure. Films display 

mechanical properties compatible with bone and can be easily assembled on top of 

titania implants with high potential for increasing osseointegration, specially at 

early stages after implant surgery.  
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VII. CHAPTER 4 

COOH-functionalized Si and Ti 
mesoporous films to complex 
metallic ions 
 

 

4.1. Motivation 

Oxide-based mesoporous hybrid materials (MHMs) display the large surface areas 

and tuneable pore sizes of mesoporous materials, the mechanical and thermal 

stabilities of an inorganic support, and are chemically functionalized with organic 

moieties.  Organic molecules included within the oxide provide a mean to tailor the 

pore surface properties, such as hydrophobicity, polarity, catalytic activity as well 

as optical and electronic features. Thus, MHMs carry the potential for many 

applications in catalysis, chemical sensing, adsorption, contaminant immobilization, 

and drug or gene delivery.[137,378,379] MHMs in the form of thin films are particularly 

interesting because they can be easily removed from reaction media and they are 

easily processable, allowing facile production of devices.[380] 
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The incorporation of organic functionalities within porous oxides has attracted the 

increasing attention of the scientific community since the early development in 

mesoporous materials’ synthesis. Two grafting routes are commonly used for 

organic fabrication: post-grafting (post-functionalization) or co-condensation (one-

step approach).[137,380] In the first case, the functionality is grafted to the material 

after consolidation of the mesostructure through vapour deposition or solution 

impregnation. The modification is established through the generation of new bonds 

between Si−OH or M−OH surface groups and the functionalization agent. The co-

condensation method involves the mixing of inorganic precursors with a precursor 

that bears the organic functionality in the presence of the template; organosilanes 

are generally used for this approach. Because the meso-structuration and 

functionalization take place simultaneously, a portion of the introduced organic 

groups remains trapped inside the network, thus hindering their accessibility to the 

medium. The benefit the of co-condensation method is that involves a reduced 

number of processing steps, provides homogeneous distribution of functional 

groups within the inorganic network, and induces minimal pore clogging. 

In this chapter the functionalization of mesoporous titania with organosilanes 

displaying carboxylic groups that can complex Sr has been explored, producing an 

alternative to the incorporation Sr in the titania matrix presented in Chapter 3. In 

this new approach Sr has been complexed through carboxylates that have been 

anchored to the porous walls through post-functionalization. Again, taking 

advantage of the large surface displayed by the mesoporous films compared to the 

non mesoporous titania, the loading of the Sr is increased in a similar way. The 

design of titania with organosilanes displaying carboxylic groups is not direct and 

requires a significant optimization of fabrication protocols.  

Initial work was performed with mesoporous silica films; carboxylated silanes were 

used for functionalization of mesoporous silica films. However, when using titania 

the carboxylic groups are capable to complexes titania, and this difficult the one-

step synthesis of films based on titania.[381,382] Therefore, an alternative fabrication 

route was founded in which the vinylmethoxysilane (VTMS) was first included in 

the mesoporous titania network and modified after films synthesis with carboxylate 

groups through a photoreaction with the silanol.  
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The synthesis of mesoporous silica films functionalized with covalently bonded 

carboxylic groups by co-condensation is shown first. Carboxylic derivatized 

alkoxysilanes are obtained by photochemical radical thiol-ene addition (PRTEA), 

produced by clicking mercaptosuccinic (MSA) or mercaptoacetic thioacids (MAA). 

Different amount of organosilanes are used for the film synthesis. Electron 

microscopy, porosimetry measurements and Small Angle X-ray Scattering with two-

dimensional detection (2D-SAXS) are used for the structural characterization of the 

film and to relate the degree of mesoporous phase ordering and the amount of 

organosilane added to the film. The incorporation of the functional groups is shown 

by X-Ray Photoelectron Spectroscopy (XPS) and Diffuse Reflectance Infrared 

Fourier Transform Spectroscopy (DRIFTS). The availability of the COOH groups for 

further chemical modification is demonstrated by DRIFTS following the changes in 

the typical carbonyl IR bands during proton exchange and Pb2+ metal complexation. 

This simple methodology generates COOH-modified silica thin films in one step, 

without the need of hard reaction conditions or deprotection steps. 

Functionalization with carboxyl groups brings a pH-dependent switch-ability to the 

pore surface that can be used for multifunctional mesoporous materials design. 

Titania based mesoporous films grafted with carboxylates cannot be synthesized in 

one step due to the complexation of the titanium by carboxylic groups, which will 

impact on the mesoporous structure and eventually limit the availability of 

carboxylates.[381,382] VTMS is co-condensed with titanium tetrachloride in order to 

obtain vinyl-functionalized Ti-Si hybrid mesoporous films. By post-grafting the MSA 

is anchored through PRTEA to the vinyl groups functionalizing the surface with 

carboxylic groups. Same methodology is used to study the structure of the films and 

show the incorporation of the functional groups. Sr2+ complexation is assessed by 

XPS and DRIFTS measurements.  

Strontium release is followed by Inductively Coupled Plasma Mass Spectrometry 

(ICP-MS). Cell proliferation and differentiation experiments are carried out using 

MC3T3-E1 pre-osteoblastic cell line, the CCK-8 dehydrogenase activity assay and by 

measuring the alkaline phosphatase (AP) activity at different time periods. Actin 

filaments and vinculin are labelled using the FAK-100 kit. 
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4.2. Experimental section 

Reagents Name Abbreviation Chemical structure 

Si precursor 
Tetraethyl 
orthosilicate 

TEOS 

 

Ti precursor 
Titanium 
tetrachloride 

TiCl4 

 

 
 

Si-Vinyl 
precursor 

Vinylmethoxysilane VTMS 

 

 
 

Carboxylic 
Acids 

Mercaptosuccinic 
acid 

MSA 

 

 
 

Mercaptoacetic acid MAA 
 

Photoinitiator Benzophenone Ph2CO 

 

 

Templates 

Brij 58 B 
 

 
 
Pluronic F127 
 
 

 
F 
  

Table VII-1. Reagents used for the synthesis of mesoporous silica and mesoporous titania 
films functionalized with carboxylic groups. 

 

 

 

 

https://www.sigmaaldrich.com/catalog/product/aldrich/131903?lang=en&region=US
https://www.sigmaaldrich.com/catalog/product/aldrich/131903?lang=en&region=US
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4.2.1. COOH-functionalized mesoporous silica film synthesis 

To synthesize COOH-functionalized mesoporous silica films the carboxylic 

trialkoxysilane precursors were prepared first. 2-((2-(Trimethoxysilyl)ethyl) 

thio)succinic acid, (MeO)3Si-MSA, and 2-((2-(trimethoxysilyl)ethyl)thio)acetic acid, 

(MeO)3Si-MAA,  precursors were prepared as reported by Bordoni et al.[143] Briefly, 

1 equivalent of vinylmethoxysilane (VTMS) was added to a vial containing methanol 

solution of the desired amount of MSA or MAA (chosen according to the desired 

proportion of organic functions in the final material) and 0.15 equivalents of 

benzophenone (Ph2CO) as  photoinitiator. Reaction solutions were then irradiated 

under gentle stirring for 16 hours, using a 15 W, 18” long black-light lamp (λmax = 

352 nm). The precursor’s reaction mixture was used in the preparation of the sols 

without any further treatment. 

The sols to produce the functionalized mesoporous silica films were prepared in 

three steps: (1) TEOS, ethanol, and the template (Brij 58 or Pluronic F127) were 

mixed; (2) the reaction mixture of thio-ene addition was added drop wise under 

stirring, the carboxylated precursor added was varied from 5 % up to 20 % in molar 

proportion; and (3) HCl solution was added drop wise under stirring. The films 

synthesized with Pluronic F127® or Brij 58 will be referred as SiF and SiB, 

respectively. The chosen order allows the correct co-condensation reaction between 

the two silanes. The theoretical molar proportions of the sols were TEOS : Si-R : 

template : HCl : EtOH : H2O = 1 – x : x : s : 0.28 : 24 : 5.2, with 0 ≤ x ≤ 0.2, R = MSA or 

MAA, and s = 0.005 for F127 or s = 0.05 for Brij 58. After its preparation, the sol was 

aged for different times in the 1−24 h range. Table VII-2 shows the complete 

information about the studied systems. 
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Carboxylic acid Template 

Nominal % 
of 
functional 
silane 

Aging time 

MSA 

F127 

5 
1 h 
5 h 

24 h 

12.5 
1 h 

24 h 

20 
1 h 
5 h 

24 h 

Brij 58 

5 
1 h 

24 h 

12.5 
1 h 

24 h 

20 
1 h 

24 h 

MAA 

F127 

5 
1 h 
5 h 

24 h 

12.5 
1 h 

24 h 

20 
1 h 
5 h 

24 h 

Brij 58 

5 
1 h 

24 h 

12.5 
1 h 

24 h 

20 
1 h 

24 h 

Table VII-2. Description of explored systems regarding type of carboxylate function, 
surfactant, percentage of silane in the material and sample aging 

Hybrid mesoporous Si1−x(SiR)xO2 films were synthesized by dip coating, applying 

the EISA approach. A withdrawal speed of 3 mm/s was used to deposit the films onto 

glass slides. Immediately after synthesis, the films were placed in a humidity-

controlled chamber at 50% relative humidity (obtained with a saturated Ca(NO3)2 

solution in water) and kept there for 24 h. Afterwards, films were exposed to a gentle 

thermal treatment: 24 h at 60 °C, 24 h at 130 °C, and 2 h at 200 °C. Finally, the 

template was extracted by immersing the films for 2 days in pure grade ethanol. 
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4.2.2. COOH-functionalized mesoporous titania film synthesis 

Mesoporous titania films (MTFs) were functionalized with carboxylic groups by 

post-grafting. The films were first synthesized with VTMS and then the carboxylic 

moiety was anchored to the films through the vinyl groups by click-chemistry. As a 

template Pluronic F127® was used. The fabrication of functionalized hybrid Ti-Si 

films with vinyl groups required the preparation of sols solution in three step 

process: (1) addition of TiCl4 to EtOH (TiCl4 : EtOH = 1 : 40 mol) under vigorous 

stirring at room temperature; (2) mix the TiCl4 solution with ethanol and Pluronic 

F127; and (3) addition of VTMS to H2O under stirring. The theoretical molar 

proportions of the sols were TiCl4 : VTMS : F127 : EtOH : H2O = 1-x : x : 0.005 : 40 : 

10 with x1 = 0.1 and x2 = 0.2.  Films with the vinyl group with x1 = 0.1 and x2 = 0.2 

are referred as V10 and V20, respectively.  

Hybrid mesoporous Ti1−x(Si-Vinyl)xO2 films were synthesized by spin coating. Films 

were prepared in round glass coverslips. A drop of 30 μL of the sol was spin coated 

at 68 rpm for 30 seconds on glass slices. Immediately after synthesis, the films were 

placed in a humidity-controlled chamber at 50% relative humidity (obtained with a 

saturated Ca(NO3)2 solution in water) and kept there for 24 h. Then, they were 

subjected to a thermal treatment: 30 minutes at 60 ˚C, another 30 minutes at 130 ˚C 

and 2 h at 200 °C. Finally, the template was extracted by immersing the films for at 

least 2 days in pure grade ethanol.  

To anchor the carboxylic group by click chemistry, the films are immersed in pure 

ethanol solution containing MSA 23.3 mM (C1) and 33.3 mM (C2) and Ph2CO as 

photoinitiator in 0.15 equivalents in moles to MSA. Reaction was performed for 1 h 

under irradiation with a 15 W, 18” long black-light lamp (λmax = 352 nm). After the 

reaction films were cleaned by immersing them 1 h in pure grade ethanol, 30 

minutes in distilled water and 1 h in pH 3 aqueous solution adjusted with HCl.  

4.2.3. Films characterization 

Pores were visualized by TEM and 2D-SAXS patterns were obtained at an angle 

between the incident radiation and the sample of 3°. The atomic composition of the 

films was determined by XPS, to calculate the atomic ratio between Sulphur and 

Silicon, three different films for each sample were measured. Ellipsometric and EEP 

measurements gave information about films thickness and pore and bottleneck 
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diameters. Film porosity was obtained from the XRR data. STEM-EDX 

measurements determined Si/Ti relation in films based on titania with Si-Vonyl.  

4.2.4. Pb2+ complexation study 

For metal coordination studies in COOH-functionalized mesoporous silica films, the 

films were put in contact with a 0.4 mM Pb(NO3)2 aqueous solution for 5 min, 

washed with water and ethanol, dried, and then scratched. DRIFTS measurements 

were performed by depositing scratched films onto a KBr-filled sample holder. To 

observe the speciation and accessibility of the COOH group in the inorganic network, 

the films were dried for 10 min in a 130 °C oven and immediately after scratched; 

the spectrum was taken immediately to minimize the water adsorption from the 

environment. In the case of acidic treatment, films were set for 10 min in a chamber 

saturated with HCl vapour. Then, films were dried and scratched in a similar way, as 

with the untreated films.  

4.2.5. Sr2+ complexation and release studies 

To complex Sr ions to the titania films bearing carboxylate groups, 100 mM and 500 

mM aqueous solutions of SrCl2 were prepared by film immersion for 3 h. After one 

immersion in distilled water films were left to dry in air for XPS measurements. As 

controls MTF and hybrid films prior to the photoreaction to attach the organic 

functionalization were used, also immersed in SrCl2 for 3 h. Samples were prepared 

by triplicate. The amount of strontium complexed and adsorbed was measured by 

XPS and atomic composition analysis. To assess ion complexation DRIFTS 

measurements were performed; films were dried at 60 °C after Sr2+ complexation. 

The strontium release was studied by ICP-MS. Briefly, samples were cleaned 

immersing in ethanol, then in water and left to dry in air. They were placed in wells 

of 12 multiwell dishes with 2 mL PBS 10 mM and the strontium release was 

measured at 5, 15, 30 min, 1, 2, 6 h and 1, 2 and 7 days. As controls the release of Sr 

from MTFs was also studied. The released Sr in PBS is diluted to 5 mL in distilled 

water in 5 % HNO3 for ICP-MS measurements. To measure the total amount of 

strontium, films were immersed in 2 mL HNO3 overnight and then distilled water 

has been added till 5 % concentration of HNO3 was obtained for ICP-MS 

measurements.  
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4.2.6. MC3T3-E1 cell bioactivity experiments 

Cell experiments were performed in COOH-functionalized hybrid films with 

complexed Sr. As control MTFs and MTFs filled with Sr were used. F-actin, nuclei 

and focal adhesions of the cells were labelled and visualized by CLSM to study cell 

adherence to the substrates. Alkaline Phosphatase Activity Assay Kit and the 

Bradford assay for total protein quantification were performed to study cell 

differentiation process at 5, 10, 15 and 20 days. All samples were evaluated in 

triplicate. 

4.3. Results and discussion 

4.3.1. COOH-functionalized Si mesoporous films 

Two different alkoxysilane bearing carboxylic moieties, one with a short alkyl chain 

and one dicarboxylate, are synthesized by PRTEA; the reaction pathway is presented 

in Figure VII-1.  

 

Figure VII-1. Scheme of the synthetic pathway to obtain alkoxysilanes with MAA 
and MSA.  

In all tested conditions, the obtained materials were porous, as can be seen in the 

TEM images (Figure VII-2 and VII-3). However, only the oxides with lower 

concentration of organic silane showed a high degree of order, as corroborated by 

TEM and 2D-SAXS. In fact, for all samples containing 5 % of organic moiety, 2D-SAXS 

patterns can be assigned to a body centred cubic Im3m pore array, oriented with the 

(110) plane parallel to the substrate. This structure is obtained with F127 and Brij 

58 as templates, and is similar to the structures obtained without organic functional 

groups.[383] In two cases with 12.5 % of nominal organic silane, the same structure 

is obtained for both SiB MSA and SiF MAA. Further increase in the amount of COOH-

modified silane to 12.5 % and 20 % impacts on the pore order. For F127 templated 

oxides, the 2D-SAXS patterns are ellipses, which correspond to locally ordered 
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(wormlike) arrays of mesopores. For Brij 58 templated samples, no pattern is 

observed, meaning that pores are not ordered. These observations agrees with 

previous studies,[384] that showed that the presence of the organic functional groups 

generally limits the organic/metal molar ratio in which order is obtained, being 20 

% the most usual limit.[137,139,140] Aging the film for 24 h has no effect on the 

behaviour of the final structure .[142]  

Regarding the plane’s distances obtained from 2D-SAXS patterns, it is interesting to 

note that the d-110 distance, the distance between the pores for the cubic structure 

in the xy plane, decreases when the amount of organic material in the film is 

increased, as can be seen for the SiF-MSA (Table VII-3).  

 

Nominal  % of 
organosilane 

Aging 
1h 24 h 

0 14.8  

5 13.3 13.5 
12.5 12.6 12.6 
20 11.2 11.4 

Table VII-3. d-110 interplanar distances (in nm) obtained from 2D-SAXS patterns for the SiF-
MSA system. 
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Figure VII-2. TEM micrographs and 2D-SAXS patterns of: a) SiF MSA 5 % 1 h, b) SiF MSA 
12.5 % 24 h, c) SiF MSA 20 % 1 h, d) SiB MSA 5% 1 h, e) SiB MSA 12.5 % 1 h and f) SiB MSA 
20 % 1 h. 
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Figure VII-3. TEM micrographs and 2D-SAXS patterns of: a) SiF MAA 5 % 1 h, b) SiF MAA 
12.5 % 24 h, c) SiF MAA 20 % 24 h, d) SiB MAA 5 % 1 h, e) SiB MAA 12.5 % 1 h and f) SiB 
MAA 20 % 1 h. 



COOH-functionalized Si and Ti mesoporous films to complex metallic ions                   Chapter 4 

133 
 

These results indicate that the diameter of micelles decreases with the increase of 

the concentration of the organic functionalities resulting in smaller interpore 

distances. This tendency suggests concentration-dependent interaction of 

templates and the organic moiety, affecting the size of the micelles and ultimately 

the pores size. A possible explanation is that the COOH moieties interact with the 

hydrophilic part of the templates diminishing the hydration of the formed micelles 

and  decreasing their size.[385]  

Adsorption and desorption isotherms for SiF and SiB MSA 20% with 1 and 24 h of 

sol aging are shown in Figure VII-4 and show the typical hysteresis loop for 

mesoporous materials. From the analysed isotherms,[262] results shown in Table 

VII-4, it can be concluded that the films presented an accessible porosity of around 

20 % and pore diameters of around 4 nm and  2 nm for F127 and Brij 58, 

respectively. These values are in good agreement with previously obtained results 

for mesoporous thin films that were treated at moderate temperatures, followed by 

template extraction using organic solvents. This kind of treatment results in less 

deformed and interconnected pores than in the case of calcination, with smaller 

pore sizes and lower porosity.[386,387] 
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Figure VII-4. EEP results for a) SiF-MSA 20 % 1 h, b) SiB-MSA 20 % 1 h, c) SiF-MSA 20 % 
24 h and d) SiB-MSA 20 % 24 h thin films. 

 

Sample Thickness (nm) Porosity (%) Pore diameter (nm) 

SiB-MSA 20 % 1 h 254 20 2.7 

SiB-MSA 20 % 24 h 225 19 2.1 

SiF-MSA 20 % 1 h 285 21 3.9 

SiF-MSA 20 % 24 h 295 20 4.7 

Table VII-4. Data obtained from EEP measurements of thickness (nm), porosity (%) and 
pore diameter (nm). 
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The EEP confirms that the obtained films present an accessible porosity of around 

20 % and pore sizes of 4 nm for F127 templated films and 2 nm for Brij 58. These 

values are in good agreement with results for mesoporous thin films treated at 

moderate temperature followed by template extraction using solvents.[386,387] 

To understand the final properties and potentialities of the materials one needs to 

understand chemical composition and speciation of the organic groups 

incorporated within the hybrid films. These results are particularly important for 

the case of mesoporous hybrid materials prepared with the co-condensation 

methodology, since it is highly probable that the organic functionalities will degrade 

due to thermal treatment. The XPS technique is used to characterize the chemistry 

of the film surface. Since the carboxylated precursors used for the hybrid films’ 

synthesis contain thioether bonds, the incorporation of the functionalizing agent 

into the films was quantified by tracking the signal of Sulphur 2p and compared to 

the Silicon 2p signal. Figure VII-5 shows representative XPS spectra of the hybrid 

films, all hybrid films analysed confirm the presence of Si, O, C, and S, indicating the 

successful incorporation of carboxylated silanes.  

Figure VII-6 and Figure VII-7 show, the high resolution scan spectra for S and Si of 

the SiB-MSA 5, 12.5 and 20 % mesoporous systems of 1 and 24 h of sol aging, 

respectively. All spectra show the Si 2p signal around 103 eV. From the high 

resolution spectra, it can be seen that the samples containing 12.5 and 20 % of the 

carboxylated silanes show the presence of two peaks at 164.2 and 168.6 eV (Figure 

VII-6c and e and Figure VII-7c and e), whereas the films with 5 % show a single 

peak at 168.6 eV (Figure VII-6a and Figure VII-7a). The binding energy at around 

164.2 can be assigned to −C−S− and the one at around 168.6 eV can be associated to 

the oxidized Sulphur species −C−SOx−C−.[388] The oxidation of S was observed for 

every sample. Oxidation could be due to the thermal treatment performed in the 

presence of oxygen. 
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Figure VII-5. XPS spectra wide scan for SiB-MSA 20% 1 h system. 
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Figure VII-6. High resolution spectra of a) S of SiB MSA 5 %, b) Si of SiB MSA 5 %, c) S of SiB 
MSA 12.5 %, d) Si of SiB MSA 12.5 %, e) S of SiB MSA 5 % and f) Si of SiB MSA 5 % of films 
prepared with 1h aged sols.  
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Figure VII-7. High resolution spectra of a) S of SiB MSA 5 %, b) Si of SiB MSA 5 %, c) S of SiB 
MSA 12.5 %, d) Si of SiB MSA 12.5 %, e) S of SiB MSA 5 % and f) Si of SiB MSA 5 % of films 
prepared with 24 h aged sols. 
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The XPS survey also provides the atomic percentage of S and Si in the samples, which 

can be related to the proportion of carboxylated organosilane incorporated into the 

films. Because each carboxylated silane molecule contains one Sulphur atom per 

Silicon the percentage of incorporated silanes can be equalled to the percentage of 

Sulphur. As shown in Table VII-5, increasing the fraction of functionalized silanes 

during film preparation, results in an increase in the final amount of Sulphur in the 

hybrid film. In addition, regardless of the sample considered, the final composition 

of the functionalizing agent in the film corresponds to around the 30 % of the 

nominal composition in the solution. This is presumably due to the degradation of 

the silanes during the thermal treatment at 200 °C and/or the template extraction 

in ethanol. The effect of sol aging is ruled out as a potential cause of degradation, 

because the binding energy for the Sulphur species and the incorporation of 

functional silanes in the final material is equivalent for different aging times, 

indicating that the silane remains stable for at least 24 h.  

Sample S/Si (%)     Sample S/Si (%) 

SiF-MSA 20% 1h 6.0 ± 0.4     SiF-MSA 20% 24 h 6.0 ± 0.7 

SiF-MSA 12.5%  1h 4.5 ± 0.3     SiF-MSA 12.5% 24 h 4.8 ± 0.4 

SiF-MSA 5%  1h 1.7 ± 0.5     SiF-MSA  5% 24 h 2.0 ± 0.1 

SiB-MSA 20% 1h 6.0 ± 0.3     SiB-MSA 20% 24 h 6.2 ± 0.5 

SiB-MSA 12.5% 1h 5.0 ± 0.6     SiB-MSA 12.5% 24 h 4.2 ± 0.5 

SiB-MSA 5%  1h 0.1± 0.1     SiB-MSA 5% 24 h 1.3 ± 0.2 

Table VII-5. Atomic Percentages for S and Si and S/Si Relation calculated from XPS 
spectra of the different systems containing the MSA moiety. 

4.3.2. Pb2+ complexation study 

Infrared spectroscopy was used to qualitatively analyse the presence and reactivity 

of COOH groups. Figure VII-8 shows DRIFTS spectra of selected MSA modified 

samples after template extraction, compared to the spectra of unmodified films. The 

IR spectrum of SiF MSA 20 % 1 h (Figure VI--8b) shows the presence of 

characteristic signals of the carbonyl group, which is absent in the SiF film (Figure 

VII-8a): a shoulder band at 1716 cm−1, associated to the carbonyl group’s 

asymmetric mode of the carboxylic acid (νC=O) protonated form, and another band 

at lower wavenumber (∼ 1578 cm−1).[389] Both bands superimpose with the band of 

adsorbed water (scissoring of OH groups). The lower wavenumber band can be 
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attributed to C=O stretching of the acidic groups that interact by hydrogen bonding 

with chemical species on the oxide surface, as Tsai et al.[390] have previously 

observed in powders by magic angle spinning NMR,[390] or to the ionized form of the 

carboxylic acid.[391] Besides the bands associated to COOH groups, the spectra shows 

the characteristics bands corresponding to the O−Si−O stretching (TO, TO2, and TO3 

modes) of the silica network at 1300−950 and 800 cm−1 zones and the Si−OH band 

at 850 cm−1.[392] Also, the stretching vibration bands corresponding to the aliphatic 

skeleton of silane and some residue of the template (νC−H) are exhibited at 2954, 

2927, and 2858 cm−1. The shift and intensity of C=O bands can be used to evaluate 

the reactivity of COOH/COO− groups toward simple reactions, such as acid−base or 

metal complexation. Note, however, that as the films were obtained by the co-

condensation method, not all carboxylic groups were available on the pore surface. 

When SiF-MSA 20 % film was exposed to HCl vapours (Figure VII-8c), the intensity 

of the band located at 1716 cm−1 increased with the concomitant disappearance of 

the band located at around 1578 cm−1, indicating that a fraction of the COOH groups 

are involved in acid−base equilibrium.[389] Immediately after, this film was 

immersed in 0.4 mM Pb2+ aqueous solution. The spectrum (Figure VII-8d) shows a 

decrease in the intensity of the band located at 1716 cm−1 and the appearance of a 

distinctive band at 1550 cm−1 that is associated with coordinated carboxylic 

groups.[389,391]  Moreover, it can be seen that the 850 cm−1 band associated with 

Si−OH does not suffer any changes after contact with acidic or Pb(II) solutions 

(Figure VII-8c and d). This indicates, as expected on the basis of previous 

results,[143] that the acidity and ion exchange due to the bare silica matrix are 

negligible when compared to those due to the COOH groups, under these 

experimental conditions. Thus, these simple acid−base and coordination 

experiments show that the included carboxylic groups are available for simple 

chemical reactions such as proton interchange or Pb(II) ion trapping. 
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Figure VII-8. DRIFTS spectra of scratched films after extraction: a) SiF, b) SiF-MSA 20 % 1 
h; c) SiF- MSA 20 % 1 h after contact with HCl and d) SiF-MSA 20 % 1 h after contact with 
Pb2+. Left: wide spectra. Right: enlargement of the COOH region. 

4.3.3. COOH-functionalized Ti based mesoporous films 

As previously mentioned, if the COOH-grafted mesoporous film is based on titania, 

is not possible to synthesize the films through the same procedure followed to 

synthesize silica based mesoporous thin films grafted with carboxylic groups in one 

step, through co-condensation. Titanium is complexed by the carboxylic groups, 

which would not be available to complex other ions and they would lose their 

functionality.[381,382] Therefore, a different approach was followed. Silanes were 

incorporated in the film during fabrication as before but bearing a vinyl group. Once 

mesoporous titania films are prepared with vinyl silanes in the pores, the MSA reacts 

with the vinyl groups gifting the pore surface with carboxylic moieties through post-

functionalization in a two-step synthesis. The synthetic pathway is depicted in 

Figure VII-9.  
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Figure VII-9. Scheme of the synthetic pathway to attach MSA to the vinyl groups present in 
the Ti-Si hybrid mesoporous films. 

Samples are prepared with two concentrations of organosilane at concentrations of 

10 and 20 % in moles to the total amount of titanium. Figure VII-10 show two high 

resolution TEM (HRTEM) images and the EDX spectra. The Ti and Si can be detected, 

and as expected, the Si amount present in the film with 20 % of Si-Vinyl (~ 22.09 %) 

is the double of the Si in films with 10 % (~  9.52 %). Then, reactions are performed 

with two concentrations of MSA (C1 = 23.3 mM and C2 = 33.3 mM). Figure VII-11 

shows the high resolutions spectra of Titanium and Sulphur, used to calculate the 

S/Ti molar relations shown in Table VII-6. S/Ti relation is the same in the 4 

different samples, meaning that the amount of MSA, which reacts with the vinyl 

group, remains constant even if the concentration of vinyl groups is increased to the 

double in the mesoporous film. This suggests that the amount of vinyl groups 

available for reaction with MSA is similar regardless the amount of added VTMS. 

Therefore, the films containing 10 % of VTMS are selected for further experiments. 

In the same line, S/Ti ratio remains constant regardless MSA concentration. 
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Figure VII-10. STEM images of MTF with a) 10 % and b) 20 % of Si –Vinyl and c) EDX 
analysis of the images. 

 

Sample S/Ti (%) 

10 % Si-Vinyl C1 9.89 ± 0.43 

10 % Si-Vinyl C2 7.97 ±  1.36 

20 % Si-Vinyl C1 6.47 ± 1.79 

20 % Si-Vinyl C2 10.05 ± 2.30 

Table VII-6. S/Ti atomic relative percentages of mesoporous titania films with 10 % and 20 
% of Si-Vinyl reacted with C1 and C2 of MSA obtained from XPS measurements.  
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Figure VII-11. XPS high resolution spectra of a) Ti and b) S of MTF with 10 % of Si-Vinyl 
reacted with C1 MSA, c) Ti and d) S of MTF with 10 % of Si-Vinyl reacted with C2 MSA, e) Ti 
and f) S of MTF with 20 % of Si-Vinyl reacted with C1 MSA and g) Ti and h) S of MTF with 
20 % of Si-Vinyl reacted with C2 MSA.  
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4.3.4. Sr2+ complexation study 

The incorporation of Sr within MTF containing 10 % Si-Vinyl and C1 MSA is the 

double than Sr in bare MTFs (Table VII-7). Figure VII-12, VII-13 and VII-14 show 

high resolution spectra of Ti and Sr with 100 and 500 mM of SrCl2 of MTFs, MTF with 

10 % Si-Vinyl and MTF with 10 % Si-Vinyl and C1 MSA, respectively. The initial 

concentration of Sr precursor (100 or 500 mM SrCl2) has no effect on the final ratio 

of Sr to Ti in the films. However, the films functionalized with vinyl groups allowed 

for higher incorporation of Sr as compared to MTFs; the Sr/Ti ratio is around 10 and 

15 %, respectively. As calculated in Chapter 2, the porosity of the MTFs is of 33 %, 

lower than the porosity of the MTF with Si-Vinyl, which could be the reason for a 

longer amount of Sr incorporated in the second type of substrates. What is more, if 

the films with Si-Vinyl are subjected to the photoreaction and the COOH groups are 

incorporated, the Sr amount increases by 33 %, and that is due to the complexation 

with carboxylic groups. Changes in the DRIFTS peaks (Figure VII-15) also confirm 

the Sr2+ complexation with carboxylic groups. In the presence of MSA bands appear 

at of 1610 – 1515 cm-1 and 1495 – 1345 cm-1, which correspond to asymmetric and 

symmetric vibrational modes of the coordinated carboxyl groups of the carboxylic 

acid (νC=O).[389,393] As mentioned, carboxylates can complex Ti, which could be the 

reason for the appearance of these bands.[381,382]  When the films are immersed in 

Sr, the maximum peak and the intensities of the asymmetric and symmetric mode of 

the coordinated carboxyl bands change, meaning that the complex is formed27 The 

band ranging from 950 to 650 cm-1 is assigned to Ti-O bonds with a peak at around 

800 cm-1, confirming that the material is formed of titania.[394,395] 

Sample Sr/Ti (%) 

MTF 100 mM SrCl2 9.3 ± 0.6 

MTF 500 mM SrCl2 11.9 ± 0.4 

10 % Si-Vinyl 100 mM SrCl2 16 ± 4 

10 % Si-Vinyl 500 mM SrCl2 15.2 ± 1.3 

10 % Si-Vinyl C1 100 mM SrCl2 19.5 ± 1.1 

10 % Si-Vinyl C1 500 mM SrCl2 19.4 ± 1.3 

Table VII-7. Sr/Ti atomic relative percentages of MTF with 100 and 500 mM SrCl2, MTF 
with 10 % of Si-Vinyl with 100 and 500 mM SrCl2 and MTF with 10 % of Si-Vinyl reacted 
with C1 MSA with 100 and 500 mM SrCl2 obtained from XPS measurements. 
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Figure VII-12. XPS high resolution spectra of a) Ti and b) Sr of MTF with 100 mM 
SrCl2 and c) Ti and b) Sr of MTF with  500 mM SrCl2.   
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Figure VII-13. XPS high resolution spectra of a) Ti and b) Sr of MTF with 10 % of Si-Vinyl 
with 100 mM SrCl2 and c) Ti and d) Sr of MTF with 10 % of Si-Vinyl with 500 mM SrCl2.  
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Figure VII-14. XPS high resolution spectra of a) Ti and b) Sr of MTF with 10 % of Si-vinyl 
reacted with C1 MSA with 100 mM SrCl2 and c) Ti and d) Sr of MTF with 10 % of Si-vinyl 
reacted with C1 MSA with 500 mM SrCl2.  
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Figure VII-15. DRIFTS spectra of scratched films: a) MTF with 10 % Si-Vinyl, b) MTF with 
10 % Si-Vinyl and C1 MSA and c) MTF with 10 % Si-Vinyl and C1 MSA after contact with 
Sr2+. 

Figure VII-16 shows TEM images of the MTF with 10 % of Si-Vinyl (Figure VII-

16a), after the reaction with MSA (Figure 16c) and once the Strontium is complexed 

(Figure VII-16e). The structure and porosity of the films remain unaffected. The X-

Ray Reflectometry (XRR) measurements (Figure VII-16b, d and f) confirmed the 

porosity of 42 % for the three samples, meaning there are no changes in the 

structure of the films. On the other hand, the SAXS pattern of the MTF with 10 % of 

Si-Vinyl (Insert Figure VII-16a) showed a halo without defined dots. The elliptic 

shape of the pattern suggests the presence of multiple domains of locally ordered 

pores.[138] After the photoreaction with UV light, where functionalization of 

mesoporous surface with carboxylic groups takes place, characteristic dots are 

observed (Insert Figure VII-16c).  

The Pluronic F127® template is removed by immersing the film in ethanol. Although 

it is generally agreed that this method is not as efficient as the calcination, it could 

not be applied here because of the possibility of losing the vinyl groups. It is possible 

therefore that not all the surfactant molecules are removed from the mesoporous if 

the ethanol extraction method is used. Besides, during the reaction to attach the MSA 

to the vinyl groups, the film is exposed to UV light, which is another technique to 

remove surfactants from mesoporous films.[396–398] Thus, the appearance of dots in 

the SAXS pattern after the photoreaction may be due to the removal of remaining 
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surfactant upon extraction with ethanol. In Figure VII-15 the C-O-C stretch (1200 – 

1000 cm-1)[394] is identified for the MTF with 10 % of Si-Vinyl, and after the 

photoreaction the intensity of the peaks are reduced.  Calculated interplanar 

distances for MTF with 10 % of Si-Vinyl show an interpore distance of 15.12 nm and 

9 in the (-110) and (110) planes, meaning there is a 40.5 % volume contraction after 

the soft thermal process up to 200 °C.[305] After the click reaction the interpore 

distance decreases to 13.26 (-110 plane) and 7.92 nm (110 plane). No differences in 

the structure of the film are observed after this is exposed to the photoreaction or 

after the complexation with strontium.  
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Figure VII-16. Characterization of MTF with 10 % Si-Vinyl, reacted with C1 MSA and then 
with 100 mM SrCl2. Characterization through TEM (a, c and e), 2D-SAXS patters (insert in a 
and c) and XRR (b, d and f). 
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4.3.5. Sr2+ release study 

After 3h of reaction with 100 mM SrCl2, the total amount of Sr is calculated in MTF 

and MTF with 10 % of Si-Vinyl and MSA C1, which is of 6.06 ± 0.82 µg and 10.99 ± 

0.52 µg, respectively. The release of Strontium in PBS was monitored by ICP-MS 

(Table VII-9, Figure VII-17), showing fast release of the Sr from MTF (Figure VII-

17a). After 2h a plateau is reached at 70 - 80 % of the total Strontium inside the MTF 

being released. Importantly, the Sr release from the COOH-functionalized film is 

more progressive (Figure VII-17b). Initially a fast release takes place (2 hours) 

which is probably due to uncomplexed Sr, followed by a second phase that is much 

slower and over a week time, where a plateau in concentration is reached. The 

amount of Sr that is released after 7 days corresponds to 42 % of the initial Sr within 

the film.  

 

 
MTF V10 MSA C1 

Time Sr in the films (µg) Released Sr (%) Sr in the films (µg) Released Sr (%) 

0 6.06 ± 0.82 
 

10.99 ± 0.52 
 

15 min 3.80 ± 0.91 62.63 ± 11.58 8.63 ± 0.22 21.45 ± 1.98 

2 h 4.74 ± 0.21 78.24 ± 3.51 8.11 ± 0.15 26.17 ± 1.32 

8 h 4.63 ± 0.32 76.35 ± 5.20 7.89 ± 0.55 28.54 ± 4.96 

2 days 4.75 ± 0.33 78.45 ± 5.47 7.31 ± 0.40 33.52 ± 3.61 

7 days 4.61 ± 0.15 76.01 ± 2.50 6.30 ± 0.35 42.66 ± 3.16 

10 days 4.33 ± 0.52 71.43 ± 8.58 6.33 ± 0.50 42.37 ± 4.51 

Table VII-8. Total amount of Sr present in the substrates and the percentage of 
released Sr over time from MTFs and MTFs with 10 % of Si-Vinyl reacted with C1 
MSA previously immersed in 100 mM SrCl2 for 3 hours measured by ICP-MS. 
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Figure VII-17. Released strontium percentage over time from a) MTFs and b) MTFs with 
10 % of Si-Vinyl reacted with C1 MSA, previously immersed in 100 mM SrCl2 for 3 hours 
measured by ICP-MS. 

4.3.6. Biocompatibility and bioactivity evaluation 

Next, cell adhesion on MTFs was evaluated. The degree of initial adhesion of cells 

determines how fast the proliferation, migration and differentiation will proceed. 

Figure VII-18 and Figure VII-19 show Confocal Laser Scanning Microscopy (CLSM) 

images of MC3T3-E1 pre-osteoblastic cells cultured on MTFs with Sr and MTFs with 

10 % Si-Vinyl and C1 MSA with Sr, respectively. The vinculin is an adapter protein 

that is involved in the interactions between the focal adhesions (FA) of the cells and 

the extracellular matrix (ECM).[310,311,313,314] While, actin filaments (F-actin) are 

stained with phalloidin (shown in red), vinculin is stained with FITC (shown in 

green). The nucleus is stained with DAPI as shown in the merged images. Detailed 

inspection of F-actin filaments suggests that cells have a similar size when cultured 

on different substrates (compare second row in Figure VII-18 and Figure VII-19) 

even if they are compared with cells grown on MTF substrates (Figure IV-7 from 

Chapter 1). It must be noticed that Figure VII-18 and Figure VII-19 show cells with 

higher filopodia,[312] as compared to the cells grown on MTF substrates, although 

there is no significant difference in cell adhesion. The higher filopodia could be a 

consequence of the presence of Sr in the films. It is known that a good interaction of 

cell with a substrate leads to improved proliferation.[310,313] MC3T3-E1 pre-

osteoblastic cell proliferation experiments (Figure VII-20) shows an increased 

proliferation rate after 2 days of cell incubation between the glass substrates and 
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the MTF and MTF with 10 % Si-Vinyl and C1 MSA, both with Sr. After 3 days, there 

is no significant difference (p > 0.05) between the cell proliferation rate on MTFs 

substrates and MTFs with Sr. However, MTF with 10 % Si-Vinyl C1 MSA and Sr show 

a higher proliferation rate of cells (p < 0.05), as the amount of Sr released from the 

COOH-functionalized film is higher (Table VII-8). After one week, cells reach 

confluence, so, no differences are observed (Figure VII-20).  

AP activity after 5 days remains constant for the three substrates (Figure VII-21), 

but after 10 days, the substrates containing Sr exhibited larger number of 

differentiated cell. After 15 days of culturing in osteogenic medium the differences 

between Sr-doped MTF and MTF with 10 % Si-Vinyl and C1 MSA with Sr are more 

pronounced, which is due to higher amount of Sr released from the second 

substrates that also occurs in a more progressive manner. As expected, after 20 days, 

the difference between the two substrates containing Sr is no longer appreciable 

.[399–402] 
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Figure VII-18. CLSM images of vinculin (first row), actin (second row), the merge of the 
actin, the vinculin and the nucleus (third row) and the zoom of the merge image (fourth 
row) at 2 h (first column), 24 h (second column) and 48 h (third column) of growth of 
MC3T3-E1 cell line on MTF with 100 mM SrCl2 substrates at 63x. 
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Figure VII-19. CLSM images of vinculin (first row), actin (second row), the merge of the 
actin, the vinculin and the nucleus (third row) and the zoom of the merge image (fourth 
row) at 2 h (first column), 24 h (second column) and 48 h (third column) of growth of 
MC3T3-E1 cell line on MTF with 10 % of Si-Vinyl reacted with C1 MSA with 100 mM SrCl2 
substrates at 63x. 
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Figure VII-20. Proliferation of MC3T3-E1 pre-osteoblasts cultured on MTF, MTF with 100 
mM SrCl2 and MTFs with 10 % of Si-Vinyl reacted with C1 MSA with 100 mM SrCl2 substrates 
for 1, 2, 3 and 7 days. * means the difference is statistically significant.  

 

 

Figure VII-21. Alkaline phosphatase activity after 5, 10, 15 and 20 days of MC3T3-E1 pre-
osteoblastic cell culture in osteogenic medium on MTF with 100 mM SrCl2 and MTFs with 
10 % of Si-Vinyl reacted with C1 MSA with 100 mM SrCl2 substrates. * and ** mean the 
differences are statistically significant. 
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4.4. Conclusions and perspectives 

In this chapter, direct incorporation of readily available COOH groups to 

mesoporous silica and titania thin films was demonstrated. Two different 

carboxylated organosilanes obtained by PRTEA were used, demonstrating the 

easiness of this reaction and the versatility of the chosen protocol to incorporate 

organic functions. Moreover, the two templates (F127 and Brij 58) used in the 

process showed identical successful results. Structural characterization 

demonstrated the generation of mesoporous phases whose degree of ordering 

depends on the amount of added organosilanes. In particular, low organosilane 

concentrations result in a body-centred cubic mesoporous ordering, whereas higher 

concentrations generate locally ordered structures. The incorporation of functional 

silanes was clearly demonstrated by XPS, showing that around 30 % of the nominal 

organosilane concentration is incorporated within the films. 

The presence of COOH groups on the pore surface is confirmed by infrared 

spectroscopy alongside with its availability for further chemical modification. Clear 

changes in the typical carbonyl signals during proton interchange and metal 

complexation experiments were observed, indicating that chemical reactions can be 

performed on the modified mesoporous structure. 

The proposed simple methodology allows for the synthesis of COOH-modified silica 

thin films in one step, without the need of harsh reaction conditions or deprotection 

steps. Moreover, as the material is obtained as a thin film, it can be easily 

incorporated in reaction media and/or integrated into devices. As COOH groups are 

expected to serve as binding sites for more complex molecules, such as proteins, 

enzymes, or ions, the presented results pave the way toward applications of such 

COOH-modified films, for example, as sensors or drug-delivery devices. 

The synthetic pathway is extended to the functionalization with carboxylic groups 

of mesoporous titania films. A two-step synthesis is followed, with a pre-

functionalization through co-condensation with VTMS, functionalizing the 

mesoporous films with vinyl groups. Films containing 10 and 20 % of organosilane 

have been synthesized. After the click reaction with MSA it has been demonstrated 

that the incorporation of COOH groups is the same for films containing a 10 or a 20 
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% of VTMS, so further experiments were performed with the first ones. Films have 

been shown to have locally ordered mesoporous structure. 

Sr2+ complexation studies have shown that the amount of Sr embedded in the films 

containing COOH groups is the double than in bare MTFs. Moreover, and more 

importantly, the release profile of the Sr is more prolonged during time, which helps 

in the differentiation process. The release also shows an initial burst release which 

would help to enhance pre-osteoblast cell attachment and proliferation processes. 

Even if there are no appreciable differences in cell attachment if results are 

compared with MTFs with Sr, the proliferation rate is improved in the 3rd day of 

culture and the differentiation is also enhanced at day 15.  

If the obtained results are compared to the ones obtained in Chapter 3 for SrTiMFs, 

it can be concluded that this new approach offers a coating with higher Sr amount; 

10.99 µg vs. 2.29 µg. Besides, the synthetic approach followed to obtain SrTiMFs is 

simpler than the one to synthesize COOH-functionalized titania films. 

This chapter shows the possibility to complex bioactive ions in MTFs containing 

larger surface areas that titania surfaces to increase the interaction surface with the 

media and enhance ion release to obtain more effective results in pre-osteoblast 

proliferation and differentiation. 
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VIII. GENERAL CONCLUSIONS 

Overall the research conducted in this thesis is focused on the functionalization of 

mesoporous titania films combining the use of antibiotics, growth factors and 

bioactive ions. Mesoporous films containing strontium and available carboxylic 

groups have been synthesized through spin coating and the EISA method. These 

films charged with antibiotics have demonstrated to be effective against S. aureus 

colonization and have been proven to promote implant osseointegration through 

pre-osteoblastic MC3T3-E1 cell proliferation and differentiation enhancement. 

Summing up the results from each chapter, the following conclusions can be drawn: 

In Chapter 1, mesoporous titania films with a porous volume of 30.7 % were 

synthesized. They were used for the encapsulation of gentamicin and surface 

functionalized with rhBMP-2. Due to the porous structure of the film the gentamicin 

undergoes a progressive release; within the first 6 h the 36 % of the gentamicin was 

released, but then a second release phase lasting weeks took place. This gentamicin 

release kinetics is optimal for antibiotic administration after a surgery; moreover, 

the localized release of gentamicin avoids the problems from a low drug 

concentration at the implant site when antibiotics are administered orally.  

The presence of the gentamicin and rhBMP-2 has been demonstrated with XPS and 

contact angle measurements. The combination of both resulted in an optimal 

coating for titanium implants. The release of gentamicin prevents S. aureus 

proliferation on the film surface, and the rhBMP-2 can enhance implant 

osseointegration and counteract negative side effects of gentamicin on cell 

proliferation.  

In Chapter 2, a PEM based on PLL and PAA-gentamicin complexes has been 

assembled on top MTFs. The complex synthesis has been optimized in order to 

obtain complexes with stable size while the LbL assembly is conducted. Complexes 

for the PEM assembly were prepared in 500 mM NaCl at pH 4.5 by mixing 0.3 mg 

mL-1 gentamicin and 1 mg mL-1 PAA. These complexes were assembled alternatively 

on top of MTFs with PLL. In total 4 bilayers were deposited. The PEM showed an 

exponential growth, which can be related to the ‘island model’ of growth of PEMs 

described in previous works. The PEM is stable till pH 13, but at physiological pH 
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progressively releases the gentamicin. The release mechanism shows an initial burst 

release followed by a progressive release lasting weeks. 

The PEM was effective against S. aureus infection, compared to the control, which 

consisted of a glass coverslip immersed in gentamicin, 3 orders of magnitude less of 

bacteria were able to form colonies. 

In Chapter 3, hybrid mesoporous films have seen prepared by incorporation of 

strontium chloride to the solution used for the synthesis of MTFs. The resulting 

SrTiMFs had a 20 % of Sr, which was homogeneously distributed in the films 

structure. Due to the presence of pores, the surface area available for the 

interchange of ions is larger, thus, a high amount of Sr can be released to the media 

in contact with the film. The 44 % of the Sr present in the films is release after 8 h, 

and this enhanced MC3T3-E1 pre-osteoblastic cell adhesion to the surface. Cells 

resulted to show higher filopodia with more defined stress fibres, moreover, cell 

differentiation is increased in a 100% compared to cells grown on top of MTFs. 

This chapter demonstrated the possibility to incorporate bioactive ions in the 

mesoporous structure and the effectiveness they have in promoting cellular 

processes. 

In Chapter 4, the surface of pores in MTFs has been functionalized with carboxylate 

groups for complexing and delivering Sr. First, mesoporous silica films containing 

available COOH groups have been synthesized in one-step synthesis. Carboxylated 

organosilanes have been prepared by PRTEA, and have been incorporated to the 

solution containing the silica precursor and the structure directing agent. The 

incorporation of the silanes in the silica films has been demonstrated by XPS 

measurements and the presence of the carboxylates through IR measurements. Pb2+ 

has been proven to be complexed by changes in the carbonyl band signal. 

Then, mesoporous titania films functionalized with COOH groups on the pore 

surface are synthesized in two-step synthesis. VTMS is co-condensed with the Ti 

precursor, and then, after film synthesis, through post-grafting, MSA reacts with the 

vinyl groups by click chemistry. Sr2+ complexation studies and the presence of COOH 

groups have been conducted by IR and XPS measurements. The release of Sr has also 

been followed. The release profile shows an initial burst release at initial times, 

followed by a prolonged release. The release helps in the initial cell adhesion to the 
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implant surface, followed by an enhanced proliferation rate, which is higher 

compared to cells cultured on top of MTF from day 3. This methodology allows the 

synthesis of COOH-modified mesoporous titania films. This COOH groups can serve 

as binding sites for ions or more complex molecules, such as drugs or proteins. 

Overall, the versatility of mesoporous substrates has been demonstrated. It is 

possible to tune the mesoporous structure and pore orientation by changing the 

structure directing agent. Also the thickness can be modified by changing the 

spinning or dipping settings, and lastly, is also possible to synthesize hybrid 

mesoporous films to endow the films with a wide range variety of functionalities. By 

tuning the synthesis of the mesoporous films different amount of molecules can be 

entrapped inside the pore structure and the inner surface area can be enhanced to 

obtain a larger interchangeable surface.  

To conclude, this thesis has highlighted the potential of mesoporous titania films 

functionalized through different approaches to induce a good osseointegration of 

implants and prevent bacterial infections. 
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