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Abstract 

The components of the extracellular matrix (ECM) are produced in situ by cells and 

are either completely secreted from the cell into the ECM or remain associated with 

the cell membrane. Amongst them are polysaccharides of the glycosaminoglycans 

(GAG) family, which are either free or covalently bound to proteins to make 

proteoglycans (PGs). These form a highly-hydrated compartment in which the 

proteins are embedded. At the molecular level, all ECM components are structured 

to execute their function and have been implicated in regulating intercellular 

communication. The sulfated GAGs interact with a wide range of proteins and their 

structure and tissue localisation is related to their function. Thus, certain GAGs may 

be particularly enriched in specific tissues, e.g., dermatan sulfate in skin, but they are 

found in all tissues; and heparan sulfate (HS) has the widest range of interacting 

protein partners. These partners include both the permanent ECM residents and the 

transients, such as the fibroblast growth factors (FGFs), which transmit signals from 

one cell to another in paracrine signalling involved in tissue development, 

differentiation and homeostasis. The aims of this thesis are (1) to use a simple 

biomimetic model of ECM in the form of a GAG brush to determine if FGF binding 

leads to different supramolecular structures. (2) To determine if these 

supramolecular arrangements allow FGF mobility as observed in vivo. The model GAG 

brush was assembled layer by layer by one-end grafting of biotinylated GAGs on a 

streptavidin monolayer, itself attached to a supported lipid bilayer. The structure of 

these brushes was probed using different recombinant human FGFs (FGF1, 

HaloFGF1, FGF2, HaloFGF2, FGF4, HaloFGF6, FGF9, FGF10, HaloFGF10, FGF17, FGF18 

and HaloFGF20) with well characterised HS binding sites (HBSs) and where “Halo” 

refers to an N-terminal Halotag fused to the FGF for fluorescence labelling. 

Rigidification of soft and highly hydrated films was assessed by quartz crystal 

microbalance with dissipation monitoring (QCM-D), spectroscopic ellipsometry (SE) 

was used to quantify the biomolecules at the surface, and fluorescence recovery 

after photobleaching (FRAP) was employed to assess the lateral diffusion of the GAGs 

and the (Halo)FGFs. FGFs showed a preference in binding stoichiometry for specific 

disaccharide structures, and the ensuing interactions led to different supramolecular 
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organisations of the brush/FGF films. Upon binding to the brushes, FGFs possessing 

multiple HBSs (‘multivalent’ FGFs) with acidic borders delimiting their HBSs were able 

to immobilise the GAG chains; some of these FGFs, e.g. HaloFGF1, remained mobile, 

whereas others were trapped in the film, e.g. HaloFGF2. Monovalent FGFs, and 

multivalent FGFs with no acidic borders around their HBSs, were found to not cross-

link the brushes and remained mobile.  

To test the idea that acidic borders on the protein surface play an important role in 

determining the ability of an FGF to cross-link HS chains and thus regulate mobility 

of the FGF in the matrix, the behaviour of fluorescently labelled Halo-FGFs were 

measured in the native pericellular matrix of fixed human keratinocytes. HaloFGF2 

was immobile in HS brushes and in the pericellular matrix of HaCaT cells. This 

indicates that although the other components of the pericellular matrix may also play 

roles in determining the diffusion dynamics of FGF2, HS would be the main director 

of it. 

Interactions between growth factors such as FGFs with components of the ECM are 

specific to their molecular features and can be precisely monitored in biomimetic 

models. These interactions trigger supramolecular structures that can be 

characterised by their stiffness. It is also possible to assess the mobility of these 

growth factors using a fluorescent label. Interestingly, the mobility of at least 

HaloFGF1, HaloFGF2 and HaloFGF10 in HS brushes was reproduced in pericellular 

matrix of HaCaT cells. A key difference is that the local supramolecular arrangement 

of the pericellular matrix components will be heavily influenced by the interactions 

of the HS chains with endogenous HS binding proteins. This will form a network of 

binding sites for FGFs, which at least in the case of HaloFGF2, did not prevent the 

immobilisation of the growth factor. However, in the case of other FGFs, e.g. 

HaloFGF6 and HaloFGF20 we detected reduced mobility. Thus, bridging the gap 

between the analyses on the HS brush model and on pericellular matrix may require 

the elaboration of a more complex in vitro model, incorporating other molecules into 

the HS brush, such as collagens and fibronectin, which have multiple HBSs and would 

be expected to present to the FGF already cross-linked HS chains and a reduced 

number of available binding sites.  
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1 Introduction  

1.1 Cell communication in multicellular organisms. 

In multicellular organisms, intercellular communication processes are the foundation 

of their growth and expansion, development, function, integrity and regeneration. 

Intercellular communication happens via various modes, the cell can target itself, a 

process that is call “autocrine” signalling or a neighbouring cell by direct molecular 

contacts (juxtacrine signalling) or cytoplasm contacts through gap junctions (1). 

Paracrine signalling is the local communication between cells without a direct 

molecular physical contact. Chemokines, cytokines, growth factors and many 

morphogens are paracrine signalling agents. They are secreted into the pericellular 

matrix of the source cell, and travel throughout the interstitial matrix towards the 

target cells. On the target cell, the paracrine effector binds to a receptor that triggers 

downstream signalling within the cell (2). This is the case of fibroblast growth factors 

(FGFs) signalling via tyrosine kinase receptors (3) and transforming growth factors 

family members such as the bone morphogenetic proteins that bind to the bone 

morphogenetic protein receptor type II in development processes (4). Intercellular 

communication can happen over longer distances, in which case the secreted 

effector travels through the endothelial barrier and is transported in the vascular 

blood flow throughout the body, but only acts on cells expressing the cognate 

receptor. This is the endocrine system and concerns hormones (Figure 1.1). The 

extracellular matrix (ECM) is the extracellular environment in contact with the cell; it 

is implicated in controlling cell fate decisions. During development, morphogen 

gradients are shaped by ECM components, whereas in homeostasis the ECM takes 

part in tissue regeneration and immunity by controlling the activity and transport of 

proteins regulating cell growth, migration and differentiation. Besides the 

components, the physical characteristics of the ECM are also relevant. It was shown 

that the elasticity of the ECM controls the differentiation of stem cells (5) and the 

polarisation of fibroblasts has been related to the stiffness of ECM (6). Stiffness and 

elasticity are both determined by the supramolecular structure of ECM, which in turn 
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depends on its molecular composition and the interactions of the component 

molecules. 

 
Figure 1.1: Forms of signalling in cellular communication.  
Endocrine signalling corresponds to the intercellular communication that occurs via 
transport of the effector by the blood stream. Juxtacrine communication involves contact 
between the signalling and the targeted cell as described in the figure. Autocrine signalling 
depicts the signalling of a cell on itself and the paracrine signalling the one to a neighbouring 
cell. In paracrine and autocrine signalling, the effector molecule is transported in the 
immediate microenvironment of the cells that is the extracellular matrix. 

 

1.2 Extracellular matrix  

 

The ECM has distinct domains, the pericellular matrix is immediately adjacent to the 

cell surface, extending 1-5 µm in some tissues (7). Further away in mesenchymal 

tissues is the interstitial matrix. In epithelial tissues and the vasculature, a specialised 

ECM is found beyond the pericellular matrix, the basement membrane, so called due 

to its molecular density causing it to be heavily stained in a number of classic 

histological preparations. Basement membrane separates these compartments from 
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the underlying mesenchyme (8) (Figure 1.2). At the molecular level, all ECM have 

reasonably well-studied components and these are mainly fibrous proteins such as 

collagens, and the polysaccharides of the glycosaminoglycan (GAGs) family.  

 

 
Figure 1.2: Schematic representation of the extracellular matrix proteoglycan organisation. 
 Here schematized are the ECM with collagen fibrils and GAGs. HSPGs core proteins (blue) 
carrying HS chains (black) are sitting in the ECM or anchored in the cell membrane, with 
bound growth factor (green).  

 

Collagens are the scaffold of extracellular matrices. They are tissue specific, 

organised in fibrils and provide resistance to shear and pressure (9). Type I and type 

III collagens sit in the interstitial matrices of soft tissues, e.g., the dermis (10). In 

bones, collagen I fibrils can represent up to 90% of matrix protein components (11). 

Collagen type IV is the fibrous components of the basement membranes and is 

connected to the interstitial matrix via collagen VI, thus the fibrous scaffolds of 

basement membrane and the interstitial matrix form interconnected networks (12). 

Along with collagen type IV, fibronectins, laminins, nidogen and perlecan are the 

main constituents of the basement membrane. Laminins are connected to collagen 

IV and perlecans by nidogens (13). The ECM is a complex network where the main 
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